用户名: 密码: 验证码:
黔北龙潭组菱铁质泥岩解吸气来源及元素背景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source and element background of desorbed gas from the siderite-bearing mudstone in northern Guizhou Province
  • 作者:徐宏杰 ; 桑树勋 ; 杨景芬 ; 金军 ; 周效志 ; 高为 ; 刘会虎
  • 英文作者:XU Hongjie;SANG Shuxun;YANG Jingfen;JIN Jun;ZHOU Xiaozhi;GAO Wei;LIU Huihu;School of Earth Science and Environment,Anhui University of Science and Technology;School of Resources and Geoscience,China University of Mining and Technology;Guizhou Engineering Research Center for Coalbed Methane (CBM) and Shale Gas;
  • 关键词:菱铁质泥岩 ; 解吸气 ; 气体来源 ; 元素背景 ; 龙潭组
  • 英文关键词:siderite-bearing mudstone;;desorbed gas;;gas source;;element background;;Longtan Formation
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:安徽理工大学地球与环境学院;中国矿业大学资源与地球科学学院;贵州省煤层气页岩气工程技术研究中心;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(41727801);; 安徽省2018年度重点研究与开发计划资助项目(1804a0802203);; 安徽省高校优秀拔尖人才培育基金资助项目(gxgwfx2019012)
  • 语种:中文;
  • 页:MTXB201906021
  • 页数:10
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:197-206
摘要
贵州省含煤区龙潭组泥岩广泛发育,是煤系非常规天然气开发层位的重要组成部分。部分泥岩因含较多菱铁矿物致含气来源具有特殊性。基于贵州省北部LC-1井上二叠统煤系地层钻孔样品气测录井和实验测试结果,研究了龙潭组菱铁质泥岩的含气性及其元素地球化学背景。开展了现场解吸、气测录井、孔隙结构电镜观测、结构物性测试分析(汞注入法、液氮与CO2注入法)、矿物成分测试、岩石热解和有机碳测定、显微组分与同位素测定等系列实验。结果表明:有机质类型主要为Ⅲ型并处于过成熟阶段,TOC含量变化较大,在0. 90%~2. 71%,碳同位素指示了陆相有机质来源。岩芯样品解吸气组分以CH4为主,解吸气含量介于0. 08~7. 79 m3/t,平均1. 60 m3/t;样品黏土矿物和石英含量分别为35. 0%和15. 7%;多数样品含有较多的菱铁矿(38. 1%)和白云石(9. 5%)。研究发现:样品解吸气量与气体注入法测试BET比表面积和BJH总孔体积、石英和黏土矿物含量均呈显著负相关关系,揭示了有机质是解吸气的主要物质来源,但存储空间并非由矿物质内部的介孔和微孔提供。菱铁矿含量与比表面积、孔体积负相关,暗示菱铁矿自身发育的晶间孔也不足以提供解吸气赋存的容储空间。菱铁矿以似层状、葡萄状、透镜状或结核状分布在有机质周围且层理连续性保持完好,形成对有机质的包围从而形成泥岩内部"微圈闭"环境,形成对有机质内烃类气体的封堵,可能是解吸气与菱铁矿含量正相关的主要原因。有机质生烃后就地吸附存储并被"微圈闭"局限,随有机质和"微圈闭"增多,封闭气体量增大,具有进一步形成超压的可能性。菱铁质泥岩与临近煤层缺乏气体运移和交换,可以具有独立的"微含气系统"。元素地球化学指标反应的氧化还原条件与区域海平面升降一致。随海平面由底至顶先降后升,解吸气量、菱铁矿含量和有机碳含量随之规律性变化,揭示沉积期菱铁矿与有机质形成于Eh值、pH值相对稳定、水循环受限的潮坪—泻湖环境。砂粒间隙水代入高价铁离子溶液与有机质还原生成的还原性气体反应,生成烃类气体并被"微圈闭"封闭而原地吸附聚集,进而对菱铁质泥岩解吸气起控制作用。
        Longtan shale is widely developed in Guizhou Province and is an important part of the unconventional natural gas for the development in coal-bearing formations.Some mudstones have special characteristics due to some siderite minerals contained.This paper takes the Upper Permian Longtan shale in the northern Guizhou as an example to examine the coal-bearing mudstone reservoir.Based on the canister desorption,well logs and test results of siderite-bearing mudstones( core samples from LC-1 well),the authors present systematic pore structure,inorganic and Rock-Eval analyses of the mudstones to examine their gas content,reservoir properties,depositional environ-ment and origin.The results show that the Longtan shale contains type Ⅲ gas-prone organic matter with an over-mature stage and has total organic carbon values ranging between 0.90% and 2.71%. Carbon isotope data clearly indicate the terrestrial organic matter source dominating the Upper Longtan formation.Desorbed gas content( obtained by canister desorption,dominated by methane) of core samples ranges from 0.08 to 7.79 m3/t with an average of 1.60 m3/t.The mudstones are mainly composed of clays( 35%) and quartz( 15.7%),and most of them contained high siderite and dolomite with an average of 38.1% and 9.5%,respectively. Desorbed gas content of core samples are positively correlated with TOC but negatively correlated with quartz and clay mineral contents,BET specific surface areas and BJH total pore volumes measured by gas injection method,which suggests that the organic matter is the main material source for desorbed gas,but the storage space is not provided by mesopores or micropores. However,the negative correlation between siderite content and specific area with pore volume( obtained by gas injection method),suggesting that the intercrystalline pore of siderite is insufficient to provide the storage space for the occurrence of the desorbed gas. The distribution of siderite around the organic matter is stratified,botryoidal,lenticular or tuberculous,and the stratigraphic continuity remains intact.The siderite surrounding the organic matter,as analogous to a "micro-trap"inside the mudstone,blocks the hydrocarbon gas migration in the organic matter.This may be the main reason for the positive correlation between desorption and siderite content.The organic matter always adsorbed and stored the hydrocarbon gas generated and sealed by"micro-trap".With the increase of organic matter and"micro-trap",the amount of enclosed gas increases.The sideritebearing mudstone with filled gas may further reach as an overpressure reservoir for a certain pressure gas sealing.Furthermore,the siderite-bearing mudstone can have independent "micro-gas system"for the lacking of gas migration and exchange with adjacent coal seams.The reducing conditions during the deposition of Longtan formation for the response of elemental geochemical index is closely interrelated to the fluctuation of sea level,indicating that the typical sedimentary environment provides favorable conditions for the siderite.The desorbed gas,siderite and organic carbon content change regularly with the process of sea level falling and rising from bottom to top of the Upper Permian,indicating that the siderite and organic matter deposited in tidal flat-lagoon with relatively stable Eh and p H values and limited water circulation.The high ferric ions brought into by sand interstitial water chemically react with reducing gas from the reduction of organic matter to create hydrocarbon gas.The gas sealed by "micro-trap"is stored as adsorbed gas on organic matter,suggesting a controlling effect on the desorbed gas of siderite-bearing mudstone.
引文
[1]龙金发.含煤沉积中的菱铁矿研究[J].淮南矿业学院学报,1986(1):97-102,105.LONG Jinfa.Study of siderite in sedimentary strata of the coal-containing[J]. Journal of Huainan Mining College,1986(1):97-102,105.
    [2]黎彤.海相沉积型菱铁矿矿床的成矿地球化学[J].地质与勘探,1979,15(1):1-8.LI Tong. Metallogenicgeochemistry of marine sedimentary siderite ore deposits[J].Geology and Prospecting,1979,15(1):1-8.
    [3]周国正.织金煤田西南矿区菱铁矿产出形态及指相意义[J].中国煤炭地质,2009,21(5):17-19.ZHOU Guozheng. Siderite occurrence modality and facies directivity[J].Coal Geology of China,2009,21(5):17-19.
    [4]董贞环,黄恒铨.砂岩、粉砂岩中的菱铁矿胶结特征[J].矿物岩石,1980(2):60-62,115.DONG Zhenhuan,HUANG Hengquan. Cementing characteristics of siderite in sandstone and siltstone[J].Journal of Mineralogy and Petrology,1980(2):60-62,115.
    [5]沈玉林,秦勇,李壮福,等.黔西上二叠统龙潭组菱铁矿层的沉积成因及地质意义[J].地学前缘,2017,24(6):152-161.SHEN Yulin,QIN Yong,LI Zhuangfu,et al. The sedimentary origin and geological significance of siderite in the Longtan Formation of western Guizhou Province[J]. Earth Science Frontiers,2017,24(6):152-161.
    [6]宗毅,沈玉林,秦勇,等.贵州织金上二叠统泥岩地球化学特征及层序界面响应[J].煤炭学报,2017,42(12):3239-3248.ZONG Yi,SHEN Yulin,QIN Yong,et al. Geochemical characteristic and its application for recognition of sequence boundary of Late Permian mudstone in Zhijin,Guizhou Province[J]. Journal of China Coal Society,2017,42(12):3239-3248.
    [7]肖骞,沈玉林,秦勇,等.鄂尔多斯盆地东北缘叠置含气系统中菱铁质泥岩测井识别及地质意义[J].天然气地球科学,2017,28(4):590-601.XIAO Qian,SHEN Yulin,QIN Yong,et al.The logging identification and the geological significance of the mudstone containing siderite in multiple superposed coalbed-methane system in northeastern area of the Ordos Basin,China[J]. Natural Gas Geoscience,2017,28(4):590-601.
    [8]张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.ZHANG Jinglian,ZHANG Pingzhong.A discussion of pyrite catalysis on the hydrocarbon generation process[J]. Advance in Earth Science,1996,11(3):282-287.
    [9] KAPLAN I R,BIRD K J,TAILLEUR I L.Source of molten elemental sulfur and hydrogen sulfide from the inigok well,northern Alaska[J].AAPG Bulletin,2012,96(2):337-354.
    [10] SHAO Longyi,ZHANG Pengfei,REN Deyi,et al. Late Permian coal-bearing carbonate successions in southern China:Coal accumulation on carbonate platforms[J]. International Journal of Coal Geology,1998,37(3):235-256.
    [11]高为,金军,易同生,等.黔北小林华矿区高阶煤层气藏特征及开采技术[J].岩性油气藏,2017,29(5):140-147.GAO Wei,JIN Jun,YI Tongsheng,et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine,northern Guizhou[J]. Lithologic Reservoirs,2017,29(5):140-147.
    [12]汤良杰,郭彤楼,田海芹,等.黔中地区多期构造演化、差异变形与油气保存条件[J].地质学报,2008,82(3):298-307.TANG Liangjie,GUO Tonglou,TIAN Haiqing,et al.Poly-cycle tectonic evolution,differential deformation and hydrocarbon reservation of central Guizhou and adjacent region[J]. Acta Geologica Sinica,2008,82(3):298-307.
    [13]王中鹏,张金川,孙睿,等.西页1井龙潭组海陆过渡相页岩含气性分析[J].地学前缘,2015,22(2):243-250.WANG Zhongpeng,ZHANG Jinchuan,SUN Rui,et al. The gasbearing characteristics analysis of the Longtan Formation transitional shale in Well Xiye 1[J].Earth Science Frontiers,2015,22(2):243-250.
    [14]易同生,包书景,陈捷,等.黔北煤田林华矿煤系气成藏特征及开发方式[J].中国煤炭地质,2017,29(9):23-30.YI Tongsheng,BAO Shujing,CHEN Jie,et al. Coal measures gas reservoiring features and exploitation pattern in Linhua Coalmine,Qianbei Coalfield[J].Coal Geology of China,2017,29(9):23-30.
    [15]陈尚斌,朱炎铭,王红岩,等.四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J].石油学报,2011,32(5):775-782.CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al.Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):775-782.
    [16]李昂,丁文龙,张国良,等.滇东地区马龙区块筇竹寺组海相页岩储层特征及对比研究[J].地学前缘,2016,23(2):176-189.LI Ang,DING Wenlong,ZHANG Guoliang,et al. Reservoir characteristics of marine shale in the Malong block of eastern Yunnan Province and comparison analysis[J]. Earth Science Frontiers,2016,23(2):176-189.
    [17]黄金亮,邹才能,李建忠,等.川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J].石油勘探与开发,2012,39(1):69-75.HUANG Jinliang,ZOU Caineng,LI Jianzhong,et al.Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin,China[J]. Petroleum Exploration and Development,2012,39(1):69-75.
    [18] ZHANG Yanzhong,XIAO Lin. Petrographic characteristics and depositional environment of No.6 coal from Xiaoyugou Mine,Jungar Coalfield,China[J]. International Journal of Coal Science&Technology,2014,1(4):395-401.
    [19]张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6):597-604.ZHANG Xuefen,LU Xiancai,ZHANG Linye,et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science,2010,25(6):597-604.
    [20] HACKLEY P C,GUEVARA E H,HENTZ T F,et al.Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales,north-central Texas:Implications for coalbed gas potential[J].International Journal of Coal Geology,2009,77(3-4):294-309.
    [21] NEWPORT L P,APLIN A C,GLUYAS J G,et al.Geochemical and lithological controls on a potential shale reservoir:Carboniferous Holywell Shale,Wales[J].Mar Pet Geol,2016,71:198-210.
    [22] ELDERFIELD H,GREAVES M J.The rare earth elements in seawater[J].Nature,1982,296:214-219.
    [23] SCHIEBER J.Black shales[M].Dordrecht:Springer Netherlands,2011:201-206.
    [24] JONES B,MANNING D A C.A comparison and correlation of different geochemical indices used for the interpretation of depositional environments in ancient mudstones[J]. Chem. Geol.,1994,111:112-129.
    [25] KIMURA H,WATANABE Y.Oceanic anoxia at the PrecambrianCambrian boundary[J].Geo.,2001,29(11):995.
    [26] BOYNTON W V.Chapter 3-Cosmochemistry of the Rare Earth Elements:Meteorite Studies[M]. HENDERSON P. Developments in Geochemistry.Elsevier,1984:63-114.
    [27] WANG H,SHAO L,HAO L,et al. Sedimentology and sequence stratigraphy of the Lopingian(Late Permian)coal measures in southwestern China[J]. International Journal of Coal Geology,2011,85(1):168-183.
    [28]程伟,杨瑞东,崔玉朝,等.贵州毕节地区晚二叠世煤质特征及其成煤环境意义[J].地质学报,2013,87(11):1763-1777.CHENG Wei,YANG Ruidong,CUI Yuchao,et al. Characteristic of Late Permian coal quality from Bijie,Guizhou Province,SW China,and its significance for Paleoenvironment[J]. Acta Geologica Sinica,2013,87(11):1763-1777.
    [29] ALLGRE C J,MINSTER J F.Quantitative models of trace element behavior in magmatic processes[J]. Earth Planet Sci. Lett.,1978,38(1):1-25.
    [30] LERMAN A,BACCINI P. Lakes-chemistry,geology,physics[J].JG,1978,88(2):249-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700