用户名: 密码: 验证码:
金属3D打印个性化股骨假体和4种类型标准化假体的生物力学对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomechanical comparison of personalized titanium femoral prosthesis fabricated by three-dimensional printing to four types of cementless prosthesis
  • 作者:刘宏 ; 蒋俊锋 ; 张云坤 ; 徐南伟 ; 王彩梅 ; 张文
  • 英文作者:Liu Hongwei;Jiang Junfeng;Zhang Yunkun;Xu Nanwei;Wang Caimei;Zhang Wen;Department of Orthopedics, Changzhou Second People's Hospital, Nanjing Medical University;College of Internet of Things Engineering,Hehai University;Beijing AI-Kang Yicheng Limited Company;Orthopedic Institute, Soochow University;
  • 关键词:股骨假体 ; 金属3D打印 ; 有限元分析 ; 生物力学 ; 应力遮挡 ; 国家自然科学基金
  • 英文关键词:femoral prosthesis;;three-dimensional metal printing;;finite element analysis;;biomechanics;;stress shielding;;the National Natural Science Foundation of China
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:南京医科大学附属常州第二人民医院骨科;河海大学物联网工程学院;北京爱康宜诚股份有限公司;苏州大学骨科研究所;
  • 出版日期:2019-08-07
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.889
  • 基金:国家自然科学面上基金资助项目(61772172),项目参与人:刘宏伟;; 常州市卫计委重大项目资助课题(ZD201617),项目负责人:刘宏伟~~
  • 语种:中文;
  • 页:XDKF201932013
  • 页数:7
  • CN:32
  • ISSN:21-1581/R
  • 分类号:73-79
摘要
背景:蓬勃发展的金属3D打印增材制造技术为骨科个性化假体的研制带来了全新的机遇,但其生物力学性能是否能满足临床需求尚待深入研究。目的:探讨高能电子束熔融金属3D打印个性化股骨假体相对于SR组配柄、矩形柄、柱形柄、锥形柄的生物力学优缺点。方法:分别将3D打印个性化股骨假体、SR组配柄、柱形柄、矩形柄、锥形柄的三维扫描stl格式数据导入UG 8.0建模,修补坏点及空洞。按临床手术要求进行虚拟截骨,置入数字化股骨假体。采用Ansys 10.0软件对5种股骨假体进行有限元网格及节点划分,对假体材料分别赋值。分别模拟双足静止站立、缓慢行走2种状态,对比5种股骨假体在界面应力、初始微动以及应力遮挡率3个方面的差异。结果与结论:(1)最大应力对比:(1)双足静止站立:3D打印个性化股骨假体正应力略高于锥形柄(10.83%),较SR组配柄、矩形柄、锥形柄正应力分别低45.65%,15.20%,41.18%;个性化股骨假体剪切应力较SR组配柄、矩形柄、柱形柄、锥形柄分别低58.53%,38.91%,15.64%,37.55%;(2)缓慢行走:3D打印个性化股骨假体正应力较SR组配柄低,较3种标准柄高;剪切应力较SR组配柄、矩形柄低(25.78%、62.50%),较柱形柄、锥形柄高(35.74%,15.82%);(2)应力遮挡率:(1)双足静止站立:3D打印个性化股骨假体对股骨近端有着最小的应力遮挡率,比SR组配柄、矩形柄、柱形柄、锥形柄分别低约56.21%,41.88%,23.92%和17.98%;(2)缓慢行走:个性化股骨假体应力遮挡率比SR组配柄、矩形柄、柱形柄、锥形柄分别低56.84%,31.10%,20.45%,16.69%;(3)假体微动:(1)双足静止站立:3D打印个性化股骨假体水平微动较其他股骨柄大,最大值26.4μm,在骨长入的微动范围内,垂直微动均较其余4种柄低;(2)缓慢行走:3D打印个性化假体的水平微动较其他柄大,最大值172μm;垂直微动较柱形柄略低(1.45%),较SR组配柄、矩形柄、锥形柄略高(16.10%,23.67%,1.54%);(4)提示高能电子束熔融金属3D打印个性化股骨假体对股骨近端的应力遮挡率低于其他4种类型标准股骨柄,界面应力分布优于SR组配柄,缓慢行走时初始微动略高于其他标准柄,但在骨长入范围内。
        BACKGROUND: The vigorous development of metal three-dimensional(3D) printing additional manufacturing technology has brought new opportunities for the development of personalized prosthesis in orthopedics, but whether its biomechanical properties meet the clinical needs remains to be further studied. OBJECTIVE: To explore the biomechanical characteristics of titanium femoral prosthesis fabricated by electron beam melting 3D metal printing to four types of cementless prosthesis as SR modular prosthesis, rectangular prosthesis, cylindrical prosthesis and tapered prosthesis. METHODS: The STL files of personalized femoral prosthesis, SR modular prosthesis, cylindrical prosthesis, rectangle prosthesis and tapered femoral prosthesis were exported to UG 8.0 software. Three-dimensional model was reconstructed and bad point and cavity were repaired to get the satisfied 3D STL format files. The digitized femoral prosthesis was implanted into femoral medullary cavity in accordance with the standard operative requirements. The five femoral prostheses with finite element mesh and node were divided by using Ansys 10.0 software and the prosthetic materials were assigned. The biomechanical characteristics of the five kinds of femoral prosthesis including stress distribution, interface stress, initial micromovement and stress shielding in simulating two states as bipedal standing still and walking slowly were compared. RESULTS AND CONCLUSION:(1) Stress distribution: When standing still with double feet, positive stress of 3D printing personalized femoral prosthesis was only slightly higher than the tapered prosthesis(10.83%). Compared with SR modular prosthesis, the positive stresses of rectangle prosthesis and tapered femoral prosthesis were lower 45.65%, 15.20% and 41.18%, respectively. Compared with the SR modular prosthesis, personalized femoral prosthesis shear stresses of rectangle prosthesis, cylindrical prosthesis and tapered femoral prosthesis were lower 58.53%, 38.91%, 15.64% and 37.55%. When in low-speed walking condition, the positive stress of personalized prosthesis was lower than SR modular prosthesis and higher than the other three types of standardized prosthesis. Shear stress was lower than SR and rectangular prosthesis(25.78%, 62.50%) and higher than cylindrical and tapered prostheses(35.74%, 15.82%).(2) Stress shielding: When standing still with double feet, the rate of proximal stress shielding of personalized femoral prosthesis was minimum, lower than the SR, rectangular, cylindrical and tapered prostheses about 56.21%, 41.88%, 23.92% and 17.98%, respectively. When in low-speed walking condition, the rate of proximal stress shielding of personalized femoral prosthesis was minimum, lower than the SR, rectangular, cylindrical and tapered prostheses about 56.84%, 31.10%, 20.45% and 16.69%, respectively.(3) Prosthesis micromotion: When standing still with double feet, horizontal micromotion of personalized femoral prosthesis was higher than the other femoral stems, the maximum value was 26.4 μm, in the micromotion range of bone ingrowth; the vertical micromotion was lower than the other four prostheses. When in low-speed walking condition, the horizontal micromotion femoral prosthesis was higher than the other femoral prosthesis, the maximum micromotion value was 172 μm; the vertical micromotion was slightly lower than cylindrical prosthesis(1.45%) and slightly higher than SR, rectangular, and tapered prostheses(16.10%, 23.67%, 1.54%) respectively.(4) The stress shielding of proximal femur by electron beam melting metal 3 D printing femoral prosthesis is lower than that of the other four types of standard prosthesis and stress distribution is better than SR modular prosthesis. The initial micromovement is slightly higher than that of other standard prosthesis, but it is within the range of bone in-growth.
引文
[1]Tsiampas DT,Pakos EE,Georgiadis GC,et al.Custom-made femoral implants in total hip arthroplasty due to congenital disease of the hip:a review.Hip Int.2016;26(3):209-214.
    [2]Al-Khateeb H,Kwok IH,Hanna SA.Custom cementless THAin patients with Legg-Calve-Perthes disease.J Arthroplasty.2014;29(4):792-796.
    [3]Hitz OF,Flecher X,Parratte S,et al.Minimum 10-year outcome of one-stage total hip arthroplasty without subtrochanteric osteotomy using a cementless custom stem for crowe iii and iv hip dislocation.J Arthroplasty.2018;(4):1-6.
    [4]Tischler EH,Hansen E,Austin MS.A custom trabecular metal implant in revision total hip replacement with a paprosky type-iv femoral defect:a case report.JBJS Case Connect.2014;4(4):103.
    [5]刘宏伟,翁益平,张云坤,等.计算机辅助设计及电子束熔融快速成型金属3D打印技术制备个性化股骨假体[J].中国修复重建外科杂志,2015,29(9):1088-1091.
    [6]冯辰栋,夏宇,李祥,等.3D打印多孔钛支架微观孔隙结构和力学性能[J].医用生物力学,2017,32(3):256-260.
    [7]Eldesouky I,Harrysson O,Marcellin-Little DJ,et al.Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem.J Med Eng Technol.2017;41(8):681-691.
    [8]魏崇斌,马骏,王彩梅,等.电子束熔融法制备的医用Ti6Al4V在人工模拟体液中的耐腐蚀行为[J].生物骨科材料与临床研究,2017,14(4):6-10.
    [9]Stolk J,Verdonschot N,Cristofolini L,et al.Finite element and ex perimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-c1inical tests.J Biomech.2002;35:499-510.
    [10]严世贵,何荣新,陈维善,等.全髋关节置换前后股骨应力变化的有限元分析[J].中华骨科杂志,2004,24(9):561-565.
    [11]Douglas RP,Richard AB,Dwight TD,et al.Pelvic muscle and acetabular contact forces during gait.J Biomech.1997;30:959-965.
    [12]唐刚,王建革,罗红霞.髋关节置换前后不同步态下股骨应力分布[J].医用生物力学,2015,30(2):143-147.
    [13]Koyano G,Jinno T,Koga D.Comparison of bone remodeling between an anatomic short stem and a straight stem in1-stage bilateral total hip arthroplasty.J Arthroplasty.2017;32(2):594-600.
    [14]Drosos GI,Touzopoulos P.Short stems in total hip replacement:evidence on primary stability according to the stem type.Hip Int.2018:1317364643.
    [15]Pyburn E,Goswami T.Finite element analysis of femoral components paper III-hip joints.Mater Des.2004;25(8):705-713.
    [16]李宁远,龚亚莉,刘煊文,等.不同材料人工髋关节假体对骨界面应力分布及生物力学的影响[J].中国组织工程研究,2016,20(9):1268-1274.
    [17]尚晓峰,窦坚,韩青.基于Abaqus下植入体与股骨腔配合的有限元分析[J].临床骨科杂志,2018,21(3):373-375.
    [18]Chanda S,Gupta S,Kumar PD.A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.J Biomech Eng.2015;137(3):1124-1136.
    [19]Mu JJ,Sang KC.Analysis of stress distribution around total hip stems custom-designed for the standardized Asian femur configuration.Biotechnol Biotechnol Equip.2014;28(3):525-532.
    [20]Peng MJ,Chen HY,Hu Y,et al.Finite element analysis of porously punched prosthetic short stem virtually designed for simulative uncemented hip arthroplasty.BMC Musculoskelet Disord.2017;18(1):295.
    [21]邱玉坤,李小康,张涌泉,等.3种不同弹性模量钛合金股骨假体在羊股骨置换模型中应力分布的三维有限元分析[J].现代生物医学进展,2016,16(28):5414-5419.
    [22]Malfroy Camine V,Rüdiger HA,Pioletti DP,et al.Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers.JBiomech.2016;49(16):4002-4008.
    [23]Orlik J,Zhurov A,Middleton J.On the secondary stability of coated cementless hip replacement:parameters that affected interface strength.Medi Eng Phys.2003;25(10):825-831.
    [24]Engh CA,O'Connor D,Jasty M,et al.Quantification of implant micromotion,strain shielding and bone resorption with porous-coated anatomic medullary locking prosthesis.Clin Orthop.1992;285:13-29.
    [25]Buhler DW,Berlemann U,Lippuner K,et al.Three-dimensional primary stability of cementless femoral stems.Clin Biomech.1997;(2):75-86.
    [26]Cilla M,Checa S,Duda GN.Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty.J Orthop Res.2017;35(11):2534-2544.
    [27]王彩梅,张卫平,王刚,等.电子束熔融快速成型技术在骨科植入物修复过程中的骨诱导能力[J].中国组织工程研究,2013,17(52):9055-9061.
    [28]程文俊,勘武生,郑琼等.3D打印钛合金骨小梁金属臼杯全髋关节置换术的短期疗效[J].中华骨科杂志,2014,34(8):816-823.
    [29]夏志勇,马康康,李凯,等.3D打印钛合金骨小梁金属臼杯、垫块在全髋关节置换翻修术中的应用[J].中国骨与关节损伤杂志,2017,32(2):121-124.
    [30]王中汉,王辰宇,刘贺,等.3D打印钛合金孔隙支架骨长入影响因素的分析[J].中国组织工程研究,2016,20(52):7821-7828.
    [31]Al-Dirini RMA,Martelli S,O'Rourke D,et al.Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation.J Biomech.2019;82:346-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700