用户名: 密码: 验证码:
茯苓真空脉动中试干燥装置设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Test of Pilot Pulsed Vacuum Infrared Drying Equipment for Poria cocos
  • 作者:张卫鹏 ; 郑志安 ; 陈畅 ; 潘忠礼
  • 英文作者:ZHANG Weipeng;ZHENG Zhian;CHEN Chang;PAN Zhongli;School of Material and Mechanical Engineering,Beijing Technology and Business University;College of Engineering,China Agricultural University;Department of Biological and Agricultural Engineering,University of California at Davis;
  • 关键词:茯苓丁 ; 干燥 ; 真空脉动 ; 碳纤维 ; 红外
  • 英文关键词:Poria cocos cubes;;drying;;pulsed vacuum;;carbon fiber;;infrared
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:北京工商大学材料与机械工程学院;中国农业大学工学院;加利福尼亚大学戴维斯分校生物与农业工程系;
  • 出版日期:2019-05-17 09:52
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点研发计划项目(2017YFD0400905);; 现代农业产业技术体系建设专项资金项目(CARS-21);; 北京工商大学青年教师科研启动基金项目(QNJJ2019-18)
  • 语种:中文;
  • 页:NYJX201907040
  • 页数:10
  • CN:07
  • ISSN:11-1964/S
  • 分类号:369-378
摘要
为解决茯苓丁工业化干燥过程中破碎率高、干燥时间长的问题,将碳纤维红外干燥技术和真空脉动干燥技术相结合,设计了基于碳纤维红外板的真空脉动中试干燥装置,以验证该干燥方式实际应用的可行性。该中试干燥装备由干燥室、真空系统、干燥模块、控制系统等组成。将实际真空脉动过程划分为4个阶段:抽真空阶段、真空保持阶段、破空阶段、常压阶段。控制系统以触摸屏为主机,通过MODBUS协议与各从机进行通讯,组成控制器网络。基于对干燥室内真空度的监测,采用时序控制,实现干燥室内"真空-常压"的连续转换。控制系统基于干燥温度的实时监测和反馈,实现对碳纤维红外板加热的有效调控。以12 mm×12 mm×12 mm的茯苓丁为试验原料进行了中试试验验证。结果表明:该中试干燥装备设计方案可行,控制方案可靠,可有效实现茯苓丁的干燥。真空保持时间、常压保持时间分别为5、4 min时,干燥时间最短,约为480 min。真空脉动红外干燥后茯苓丁一级品占比83. 63%,相比目前的连续式热风干燥,破碎率明显降低。
        In order to solve the problem of long drying time and high breakage rate of Poria cocos cubes during industrial drying process,the infrared drying technology of carbon fibers was combined with the vacuum pulsating drying technology,and a pulsed vacuum drying equipment was designed based on characteristic carbon fibers infrared plate. The pilot-scale drying equipment consisted of drying chamber,vacuum system,single-layer drying unit and control system. For convenience of analysis,the actual vacuum pulsed process was divided into four stages: vacuum stage,vacuum holding stage,breaking stage and atmospheric pressure holding stage. The touch screen was connected with the slave controllers by RS232/485 to form a network,and communicated with each other through the MODBUS protocol. Based on the monitoring of vacuum degree in drying chamber,the continuous conversion from vacuum to atmospheric pressure in drying chamber was realized by time sequence control. Based on the monitoring of the temperature of carbon fiber infrared board and the feedback of the drying temperature,the drying temperature can be effectively controlled. Poria cocos cubes with size of 12 mm × 12 mm × 12 mm was used as experimental material to verify the results. The results showed that the design and control scheme of the drying equipment were reliable,and the continuous pulsation of vacuum-atmospheric pressure can be realized,and the material can be dried effectively. The shortest drying time was about 480 min when the vacuum duration time and atmospheric pressure duration time were 5 min and 4 min,respectively.Compared with continuous hot air drying,the breakage rate of pulsed vacuum drying was obviously reduced. The drying equipments and results can be applied to the drying of Poria cocos cubes,which can provide theoretical basis for the combined application of infrared drying technology and pulsed vacuum drying technology.
引文
[1] KAMILOGLU S,TOYDEMIR G,BOYACIOGLU D,et al. A review on the effect of drying on antioxidant potential of fruits and vegetables[J]. Critical Reviews in Food Science and Nutrition,2016,56(Supp. 1):110-129.
    [2] DENG L,YANG X,MUJUMDAR A S,et al. Red pepper(Capsicum annuum L.)drying:effects of different drying methods on drying kinetics,physicochemical properties,antioxidant capacity,and microstructure[J]. Drying Technology,2018,36(8):893-907.
    [3] WANG J,BAI T Y,WANG D,et al. Pulsed vacuum drying of Chinese ginger(Zingiber officinale Roscoe)slices:effects on drying characteristics,rehydration ratio,water holding capacity,and microstructure[J]. Drying Technology,2019,37(3):301-311.
    [4]张璧光,常建民,伊松林,等.浮压下马尾松的干燥特性及水分迁移机理初探[J].工程热物理学报,2001,22(5):612-614.ZHANG Biguang,CHANG Jianmin,YI Songlin,et al. The preliminary study of drying characteristics and mechanism of water movement on masson pine under floating pressures[J]. Journal of Engineering Thermophysics,2001,22(5):612-614.(in Chinese)
    [5] CHUA K J,CHOU S K. On the experimental study of a pressure regulatory system for bioproducts dehydration[J]. Journal of Food Engineering,2004,62(2):151-158.
    [6]高振江,吴定伟,张树阁,等.滚筒式真空脉动干燥机设计[J].农业机械学报,2010,41(3):113-116.GAO Zhenjiang,WU Dingwei,ZHANG Shuge,et al. Design of pulsed vacuum drum dryer[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(3):113-116.(in Chinese)
    [7] XIE L,MUJUMDAR A S,FANG X,et al. Far-infrared radiation heating assisted pulsed vacuum drying(FIR-PVD)of wolfberry(Lycium barbarum L.):effects on drying kinetics and quality attributes[J]. Food and Bioproducts Processing,2017,102:320-331.
    [8] WANG J,MU W,FANG X,et al. Pulsed vacuum drying of Thompson seedless grape:effects of berry ripeness on physicochemical properties and drying characteristic[J]. Food and Bioproducts Processing,2017,106:117-126.
    [9]张卫鹏,高振江,肖红伟,等.基于Weibull函数不同干燥方式下的茯苓干燥特性[J].农业工程学报,2015,31(5):317-324.ZHANG Weipeng,GAO Zhenjiang,XIAO Hongwei,et al. Drying characteristics of Poria cocos with different drying methods based on Weibull distribution[J]. Transactions of the CSAE,2015,31(5):317-324.(in Chinese)
    [10]张卫鹏,肖红伟,郑志安,等.基于碳纤维红外板加热的干燥装备设计与试验[J].农业工程学报,2016,32(17):242-251.ZHANG Weipeng,XIAO Hongwei,ZHENG Zhian,et al. Design and experiment of vacuum pulsed drying equipment based on carbon fiber infrared heating plate[J]. Transactions of the CSAE,2016,32(17):242-251.(in Chinese)
    [11]薛令阳,王书茂,MUJUMDAR A S,等.基于干燥均匀性的真空脉动干燥加热控制技术[J/OL].农业机械学报,2019,50(4):317-325.XUE Lingyang,WANG Shumao,MUJUMDAR A S,et al. Heating control technology of vacuum pulse drying based on drying uniformity[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):317-325. http:∥www. jcsam. org/jcsam/ch/reader/view_abstract. aspx? file_no=20190436&flag=1. DOI:10. 6041/j. issn. 1000-1298. 2019. 04.036.(in Chinese)
    [12]薛令阳,王书茂,高振江,等.真空干燥过程中物料质量在线测量设备设计与试验[J/OL].农业机械学报,2018,49(9):326-337.XUE Lingyang,WANG Shumao,GAO Zhenjiang,et al. On-line measurement of material quality in vacuum drying process[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(9):326-337. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20180938&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2018. 09. 038.(in Chinese)
    [13] VISHWANATHAN K H,GIWARI G K,HEBBAR H U. Infrared assisted dry-blanching and hybrid drying of carrot[J]. Food and Bioproducts Processing,2013,91(2):89-94.
    [14] SAVAS K,BASMAN A. Infrared drying:a promising technique for bulgur production[J]. Journal of Cereal Science,2016,68:31-37.
    [15] ZHU Y,PAN Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating[J]. Journal of Food Engineering,2009,90(4):441-452.
    [16]李树君,林亚玲,潘忠礼.红外技术用于农产品灭酶和脱水干燥的研究综述[J].农业机械学报,2008,39(6):109-112.LI Shujun,LIN Yaling,PAN Zhongli. Investigation of infrared technology on blanching and dehydration of farm products[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(6):109-112.(in Chinese)
    [17] PEI Y,TAO T,YANG G,et al. Lethal effects and mechanism of infrared radiation on Sitophilus zeamais and Tribolium castaneum in rough rice[J]. Food Control,2018,88:149-158.
    [18] PAN Z,LI X,KHIR R,et al. A pilot scale electrical infrared dry-peeling system for tomatoes:design and performance evaluation[J]. Biosystems Engineering,2015,137:1-8.
    [19]张卫鹏,肖红伟,高振江,等.碳纤维红外板辐射特性及其农产品物料干燥试验[J].农业工程学报,2015,31(19):285-293.ZHANG Weipeng,XIAO Hongwei,GAO Zhenjiang,et al. Infrared drying properties and drying experiment of carbon fiber for agricultural production[J]. Transactions of the CSAE,2015,31(19):285-293.(in Chinese)
    [20]潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2006:549-606.
    [21]徐成海.真空干燥技术[M].北京:化学工业出版社,2006:325-355.
    [22]王晓东.真空技术[M].北京:冶金工业出版社,2006:399-415.
    [23]达道安.真空设计手册[M].北京:国防工业出版社,2004:98-133.
    [24] XIAO H,BAI J,XIE L,et al. Thin-layer air impingement drying enhances drying rate of American ginseng(Panax quinquefolium L.)slices with quality attributes considered[J]. Food and Bioproducts Processing,2015,94:581-591.
    [25] XIAO H,PANG C,WANG L,et al. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer[J]. Biosystems Engineering,2010,105(2):233-240.
    [26] AIDANI E,HADADKHODAPARAST M,KASHANINEJAD M. Experimental and modeling investigation of mass transfer during combined infrared-vacuum drying of Hayward kiwifruits[J]. Food Science&Nutrition,2017,5(3):596-601.
    [27] XIAO H,BAI J,SUN D,et al. The application of superheated steam impingement blanching(SSIB)in agricultural products processing—a review[J]. Journal of Food Engineering,2014,132:39-47.
    [28] PU Y Y,SUN D W. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution[J]. Biosystems Engineering,2017,156:108-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700