用户名: 密码: 验证码:
初始相对密实度对粗颗粒土K_0影响试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Influence of Initial Relative Density on K_0 of Coarse Grained Soil
  • 作者:蒋明杰 ; 朱俊 ; 何顺宾
  • 英文作者:JIANG Mingjie;ZHU Jungao;HE Shunbin;Key Lab.of Ministry of Education for Geomechanics and Embankment Eng.,Hohai Univ.;Geotechnical Research Inst.,Hohai Univ.;College of Civil Eng.and Architecture,Guangxi Univ.;Chengdu Eng.Corp.Ltd.,Power China;
  • 关键词:静止侧压力系数 ; 粗颗粒土 ; 初始相对密实度 ; 竖向应力 ; 土料类型
  • 英文关键词:at-rest earth pressure coefficient;;coarse grained soil;;initial relative density;;effective vertical stress;;soil type
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:河海大学岩土力学与堤坝工程教育部重点实验室;河海大学岩土工程科学研究所;广西大学土木建筑工程学院;中国水电顾问集团成都勘测设计研究院;
  • 出版日期:2019-06-20 15:28
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:国家重点研发计划项目(2017YFC0404804);; 国家自然科学基金项目(51479052);; 江苏省研究生科研与实践创新计划项目(20141B1605313);; 水利部土石坝破坏机理与防控技术重点实验室开放研究基金项目(YK915001)
  • 语种:中文;
  • 页:SCLH201904009
  • 页数:6
  • CN:04
  • ISSN:51-1773/TB
  • 分类号:73-78
摘要
静止侧压力系数是土体重要的力学参数,深入研究粗颗粒土静止侧压力系数有重要的理论意义和应用价值。关于初始相对密实度对粗颗粒土静止侧压力系数影响的研究几乎空白。为研究粗颗粒土在不同初始相对密实度条件下静止侧压力系数的变化规律,针对某堆石料及砂卵砾石料,利用新近研制的大型静止侧压力系数试验仪,对这两种粗颗粒土不同初始相对密实度试样进行大型静止侧压力系数试验。试验结果表明:土体静止侧压力系数随着竖向应力的增加呈减小趋势,而且这种趋势随着竖向应力的增大趋于平缓;粗颗粒土的静止侧压力系数与初始相对密实度存在线性负相关关系;土料类型对土体静止侧压力系数有一定影响,在正常固结状态下,砂卵砾石料静止侧压力系数可比堆石料大4.0%~7.5%。超固结状态下,砂卵砾石料静止侧压力系数可比堆石料大0~12.4%。通过分析堆石料静止侧压力系数试验结果,验证了笔者之前提出的静止侧压力系数与竖向应力关系式也适用于初始相对密实度不为0的粗颗粒土,并在该关系式的基础上,总结出一个能同时反映粗颗粒土静止侧压力系数与初始相对密实度以及竖向应力之间关系的经验公式。最后,利用砂卵砾石料静止侧压力系数试验结果验证了该经验公式的准确性及适用性。
        The at-rest earth pressure coefficient is an important mechanical parameter of soil, so the study of the at-rest earth pressure coefficient of coarse grained soil has important theoretical value and practical significance. The relevant research about the influence of initial relative density on at-rest earth pressure coefficient of coarse grained soil is almost blank. To study the at-rest earth pressure coefficient behavior of coarse grained soil with different initial relative density, by changing initial relative density of a sandy gravel and a rockfill with the same gradation, a number of tests to obtain the at-rest earth pressure coefficient behavior of these test specimens were performed using a new-developed large-size apparatus. The test data showed that the at-rest earth pressure coefficient decreases with increasing effective vertical stress, and the tendency of decreasing at-rest earth pressure coefficient trends to weaken with increasing effective vertical stress. There exists a linear negative correlation between the values of at-rest earth pressure coefficient and initial relative density for coarse grained soil. The at-rest earth pressure coefficient is influenced by soil type. During the loading the at-rest earth pressure coefficient of sandy gravel is 4.0%~7.5% greater than that of rockfill, and during the unloading the at-rest earth pressure coefficient of sandy gravel is 0~12.4% greater than that of rockfill. The analysis of the test data of rockfill showed that the relation between at-rest earth pressure coefficient and effective vertical stress, developed by the authors, is appropriate for coarse grained soil with initial relative density that is not zero. Based on the relation, an empirical formula, which can describe well the relationship of effective vertical stress and initial relative density to at-rest earth pressure coefficient for coarse grained soil, was obtained. Furthermore,this empirical formula was verified by test data of sandy gravel.
引文
[1]Sarma S K,Tan D.Determination of critical slip surface in slope analysis[J].Geotechnique,2006,56(8):539-550.
    [2]Kutschke W G,Vallejo L E.Investigation of lateral stress relief using finite elements and fracture mechanics:case history study of the saxon pit[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(10):1277-1283.
    [3]Ahmad S M.Pseudodynamic approach for computation of seismic passive earth resistance including seepage[J].Ocean Engineering,2013,63(5):63-71.
    [4]Zhu Jungao,Shi Jiangwei,Luo Xuehao,et al.Experimental study on stress-strain-strength behavior of sand with different densities[J].Chinese Journal of Geotechnical Engineering,2016,38(2):336-341.[朱俊高,史江伟,罗学浩,等.密度对砂土应力应变强度特性影响试验研究[J].岩土工程学报,2016,38(2):336-341.]
    [5]Zhu Jungao,Guo Wanli,Xu Jiacheng,et al.DEM analysis on impact of gradation and compactness on coarse-grained soil in tri-axial test[J].Journal of Chongqing Jiaotong University,2017,36(6):70-74.[朱俊高,郭万里,徐佳成,等.级配和密实度对粗颗粒土三轴试验影响离散元分析[J].重庆交通大学学报,2017,36(6):70-74.]
    [6]Xu Riqing,Wang Xingchen,Zhang Jun,et al.Experiment of initial relative density effects on sand strength[J].Journal of Jiangsu University,2012,33(3):345-349.[徐日庆,王兴陈,张俊,等.初始相对密实度对砂土强度特性影响的试样研究[J].江苏大学学报,2012,33(3):345-349.]
    [7]Gan Wenning,Zhu Dayong,Wu Yinglei,et al.Experimental study on shear strength of red sandstone fine-grained soils[J].Journal of Sichuan University(Engineering Science Edition),2014(Supp2):70-75.[甘文宁,朱大勇,吴迎雷,等.红砂岩细粒土抗剪强度的试验研究[J].四川大学学报(工程科学版),2014(增刊2):70-75.]
    [8]Jaky J.The coefficient of earth pressure at rest[J].Journal ofthe Society of Hungarian Architects and Engineers,1944,78(22):355-358.
    [9]Shi Hongyan,Xie Dingyi,Wang Wenshao.A theoretical formula determining the coefficient of earth pressure at rest for cohesionless soil[J].Journal of Hydraulic Engineering,2001,32(4):85-88.[史宏彦,谢定义,汪闻韶.确定无粘性土静止土压力系数的一个理论公式[J].水利学报,2001,32(4):85-88.]
    [10]Federico A,Elia G,Germano V.A short note on the earth pressure and mobilized angle of internal friction in one-dimensional compression of soils[J].Journal of Geoengineering,2008,3(1):41-46.
    [11]Vardhanabhuti B V,Mesri G M.Coefficient of earth pressure at rest for sands subjected to vibration[J].Canadian Geotechnical Journal,2007,44(10):1242-1263.
    [12]Northcutt S,Wijewickreme D.Effect of particle fabric on the coefficient of lateral earth pressure observed during onedimensional compression of sand[J].Canadian Geotechnical Journal,2013,50(5):457-466.
    [13]Lee J,Yun T S,Lee D,et al.Assessment of K0 correlation to strength for granular materials[J].Soils&Foundations,2013,53(4):584-595.
    [14]Lee J,Lee D,Park D.Experimental investigation on the coefficient of lateral earth pressure at rest of silty sands:Effect of fines[J].Geotechnical Testing Journal,2014,37(6):967-979.
    [15]Zhu Jungao,Jiang Mingjie,Lu Yangyang,et al.Experimental study on the K0 coefficient of sandy gravels under different loading conditions[J].Granular Matter,2018,20(3):40.
    [16]Landva A O,Valsangkar A J,Pelkey S G.Lateral earth pressure at rest and compressibility of municipal solid.[J].Canadian Geotechnical Journal,2000,37(6):1157-1165.
    [17]Levenberg E,Garg N.Estimating the coefficient of at-rest earth pressure in granular pavement layers[J].Transportation Geotechnics,2014,1(1):21-30.
    [18]Zhu Jungao,Lu Yangyang,Jiang Mingjie,et al.Experimental study on influence of stress state on K0 coefficient for coarse grained soil[J].Rock and Soil Mechanic,2018,39(8):1-6.[朱俊高,陆阳洋,蒋明杰,等.新型静止侧压力系数试验仪的研制与应用[J].岩土力学,2018,39(8):1-6.]
    [19]Lirer S,Flora A,Nicotera M V.Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel[J].Acta Geotechnica,2011,6(1):1-12.
    [20]Gu X,Hu J,Huang M.K0 of granular soils:A particulate approach[J].Granular Matter,2015,17(6):703-715.
    [21]Mokhtari M,Shariatmadari N,Ali A H R,et al.Design and fabrication of a large-scale oedometer[J].Journal of Central South University,2015,22(3):931-936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700