用户名: 密码: 验证码:
微量Mg元素添加对Cu-Cr合金析出行为及性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy
  • 作者:邬善江 ; 王俊峰 ; 钟淑伟 ; 张建波 ; 汪航 ; 杨斌
  • 英文作者:WU Shanjiang;WANG Junfeng;ZHONG Shuwei;ZHANG Jianbo;WANG Hang;YANG Bin;School of Material Science and Engineering,Jiangxi University of Science and Technology;Institute of Engineering Research,Jiangxi University of Science and Technology;
  • 关键词:金属材料 ; Cu-Cr系合金 ; 显微组织 ; 时效强化 ; 抗软化性能
  • 英文关键词:metallic materials;;Cu-Cr system alloy;;microstructure;;aging strengthening;;softening resistance
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:江西理工大学材料科学与工程学院;江西理工大学工程研究院;
  • 出版日期:2019-07-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家重点研发计划(2016YFB0301400);; 国家自然科学基金(51461017,51561008);; 江西省自然科学基金(20171ACB21044)~~
  • 语种:中文;
  • 页:CYJB201907010
  • 页数:9
  • CN:07
  • ISSN:21-1328/TG
  • 分类号:74-82
摘要
通过熔炼铸造工艺制备了Cu-Cr和Cu-Cr-Mg合金,评价了Mg元素对Cu-Cr合金硬度、导电和抗软化性能的影响,研究了Mg元素对Cu-Cr合金析出相的细化作用,探讨了Mg元素的迁移行为。结果表明,相比于Cu-Cr二元合金,时效态Cu-Cr-Mg合金具有更高的硬度和软化温度,且保持较高的导电性能。两种合金的主要时效强化相均为纳米Cr析出相,Mg元素的加入抑制了纳米沉淀相的长大和结构转变,峰时效态Cu-Cr-Mg合金的析出相与基体可能仍保持共格界面关系,过时效态合金中出现与Heulser相结构相同的析出相,且峰时效态Cu-Cr-Mg合金经过高温保温处理后,其强化相的尺寸明显小于Cu-Cr合金析出相。EDS的结果表明,在时效初期Mg和Cr共存于析出相内部,而在时效后期析出相内部只有Cr元素存在,Mg元素发生迁移,同时理论估算结果显示,Mg元素可明显降低Cu(fcc)/Cr(bcc)之间的界面能,导致其偏聚于基体/析出相界面处,这可能是Mg元素能够细化析出相和提高合金性能的主要原因。
        Cu-Cr and Cu-Cr-Mg alloys were prepared by melting and casting process, then the effect of Mg addition on hardness, electrical properties and softening resistance of the alloys was assessed. The results show that after aging treatment, the hardness and softening temperature of the CuCr-Mg alloy are higher than that of the Cu-Cr binary alloy, while the high electrical conductivity is maintained. The main strengthening mechanism of these two alloys is aging precipitation strengthening. The addition of Mg inhibits the growth and structural transformation of the nano-precipitates. The strengthening phase of the peak-aged Cu-Cr-Mg alloy still maintains a coherent interface with the matrix. The precipitate with the similar structure as Heulser phase is observed in the over-aging alloy. After post heat treatment of the peak-aged alloys, the size of the strengthening phase of Cu-Cr-Mg alloy is significantly smaller than that of the Cu-Cr alloy. Mg and Cr coexist in the precipitate at the early stage of aging, while in the later stage of aging, only Cr exists inside the precipitate. The theoretical estimation results show that Mg can significantly reduce the interfacial energy between Cu(fcc) and Cr(bcc), leading to segregation of Mg at the interface matrix/precipitate. This may be the main reason why Mg can refine the precipitates and improve the performance of the Cu-Cr alloy.
引文
[1] Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion[J]. Materials Letters, 2017, 199:46
    [2] Papillon A, Missiaen J M, Chaix J M, et al. Sintering mechanisms of Cu-Cr metallic composites[J]. International Journal of Refractory Metals&Hard Materials, 2017, 65:9
    [3] Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Material Science and Engineering A, 2017, 700:107
    [4] Wang Y, Yan Q Z, Zhang X L, et al. Effect of copper powder on properties of Cu-based friction material[J]. Chinese Journal of Materials Research, 2013, 27(1):37(王晔,燕青芝,张肖路等.铜粉对铜基摩擦材料性能的影响[J].材料研究学报, 2013, 27(1):37)
    [5] Chen J S, Yang B, Wang J F, et al. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys[J]. Materials Research Express, 2018, 5(2):1
    [6] Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia, 2012, 60(11):4575
    [7] Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing[J]. Acta Materialia, 2002, 50(7):1639
    [8] Chakrabarti D J, Laughlin D E. The Cr-Cu(chromium-copper)system[J]. Bulletin of Alloy Phase Diagrams, 1984, 5(1):59
    [9] Deng J Q, Zhang X Q, Shang S Z, et al. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites[J].Materials and Design, 2009, 30(10):4444
    [10] Yamane T. The foundation of high strength and high conductivity conductive copper alloy design[J]. Journal of the Japan Copper and Brass Research Association, 1990, 29:13
    [11] Kermajani M, Raygan S, Hanayi K, et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu-Cr-Zr alloy[J]. Materials Design, 2013, 51:688
    [12] Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017, 32(7):1324
    [13] Zhang X P. Research of microstructures and properties of high strength and high conductivity Cu-Cr-In alloys[D]. Ganzhou:Jiangxi University of Science and Technology, 2015(张小平.高强高导Cu-Cr-In合金的组织与性能研究[D].赣州:江西理工大学, 2015)
    [14] Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification[J]. Materials Science Engineering A,2001, 304(1):529
    [15] Zhang P C, Jie J C, Gao Y, et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu-Cr system alloys[J]. Journal of Materials Research, 2015, 30(13):2073
    [16] Cheng J Y, Shen B, Yu F X. Precipitation in a Cu-Cr-Zr-Mg alloy during aging[J]. Materials Characterization, 2013, 81(4):68
    [17] Xiao X P, Liu R Q, Yi Z Y, et al. Two-step deforming and aging research on microstructure and properties of Cu-Cr-Zr-Mg alloy[J].Materials Review, 2016, 30(12):81(肖翔鹏,柳瑞清,易志勇等.二级时效形变对Cu-Cr-Zr-Mg合金组织与性能影响研究[J].材料导报, 2016, 30(12):81)
    [18] Xia C D, Jia Y L, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materials Design, 2012,39:404
    [19] Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2018, 752:191
    [20] Yu F X, Cheng J Y, Shen B. Precipitation sequence of Cu-Cr-ZrMg alloy during early aging stage[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12):3360(余方新,程建奕,沈斌. Cu-Cr-Zr-Mg合金早期时效析出贯序[J].中国有色金属学报, 2013, 23(12):3360)
    [21] Su J H, Dong Q M, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering A,2005, 392(1–2):422
    [22] Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71wt%Cr alloy[J]. Journal of Alloys and Compounds, 2017, 708:1096
    [23] Liu Y, Xiao Z, Li Z, et al. Properties and microstructure evolution of Cu-Cr-Ag alloy with thermomechanical treatments[J]. Chinese Journal of Rare Metals, 2018, 42(4):0337(刘月,肖柱,李周等.形变热处理对Cu-Cr-Ag合金组织和性能的影响[J].稀有金属, 2018, 42(4):0337)
    [24] Qi Z F. Diffusion and phase transition in solid metals[M]. Beijing:Machinery Industry Press, 1998:331(戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998:331)
    [25] Kaptay G. On the interfacial energy of coherent interfaces[J]. Acta Materialia, 2012, 60(19):6804

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700