用户名: 密码: 验证码:
涡轮钻具叶片电解加工流场设计及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow Field Design and Optimization of Turbine Drill Blade Using Electrolytic Machining
  • 作者:李晓龙 ; 刘书海 ; 肖华平
  • 英文作者:Li Xiaolong;Liu Shuhai;Xiao Huaping;College of Mechanical and Transportation Engineering,China University of Petroleum (Beijing);
  • 关键词:电解加工 ; 电解液 ; 涡轮钻具叶片 ; 阴极叶片模型 ; 近轮廓模型 ; 流场分布
  • 英文关键词:electrolytic machining;;electrolyte;;turbine drill blade;;cathode blade model;;near-contour model;;flow field distribution
  • 中文刊名:SYJI
  • 英文刊名:China Petroleum Machinery
  • 机构:中国石油大学(北京)机械与储运工程学院;
  • 出版日期:2019-07-10
  • 出版单位:石油机械
  • 年:2019
  • 期:v.47;No.485
  • 基金:国家自然科学基金项目“页岩水力压裂过程水基润滑摩擦行为及作用机制研究”(51575529)
  • 语种:中文;
  • 页:SYJI201907003
  • 页数:8
  • CN:07
  • ISSN:42-1246/TE
  • 分类号:20-27
摘要
为了提升叶片性能,涡轮钻具叶片设计愈加复杂,传统加工工艺已不适于加工制造涡轮钻具叶片。为此,提出使用电解加工技术加工涡轮钻具叶片,并应用数值模拟方法对影响电解加工精度的电解液流场进行仿真分析。模拟仿真了电解液在理想化流道模型、叶片阴极流道模型以及近轮廓流道模型中的流场分布。研究结果表明:用叶片阴极模型和近轮廓模型代替传统的理想化模型,也可更好地模拟实际加工流场;改变电解液入流角的大小可以改善传统的理想化模型,可以更好地模拟实际加工流场;改变电解液入流角的方向可以改善入口流线紊乱情况,但效果并不明显,也不能使电解液均匀分布;增加出口导流段可以使电解液分布更加均匀,改善入口流线紊乱状况;叶盆阴极流场使用竖直导流、叶背阴极流场使用相切导流可以获得更好的流场分布效果;使用近轮廓模型作为电解加工流道,可以获得最优的电解液流场分布,但是此流道模型需要预先粗加工阳极工件,成本较高。研究结果可为涡轮钻具叶片的电解加工提供理论指导。
        To improve the performance of the blade,the design of the turbine drill blade is more and more complicated. And the traditional machining process is no longer suitable for processing the turbine drill blade. To address the problem,the electrolytic processing technology is proposed to process and manufacture the turbine drilling blade. The numerical simulation method is used to simulate the electrolyte flow field which affects the precision of electrolytic machining. Simulations are conducted on the flow field distribution of the electrolyte in the idealized flow path model,the cathode blade flow path model and the near-contour flow path model. The results show that the blade cathode model and the near contour model are better alternatives for traditional idealized model. Changing the direction of the electrolyte inflow angle can improve the traditional idealized model and better simulate the actual flow field,and it can also improve the disturbance of the inlet flow line,but the effect is insufficient,and cannot evenly distribute the electrolyte. Addition of the outlet diversion section can make the electrolysis more uniform and reduce the inlet flow disturbance. Better flow field distribution could be obtained with the vertical diversion for the cathode flow field of the blade concave and the tangential diversion for the cathode flow field of the blade back.Taking the near contour model as the electrolytic machining flow path can obtain the optimal flow field distribution of the electrolyte. But costly rough machining of the anode work piece in advance is required. The study could provide theoretical guidance for the electrolytic machining of turbine drill blades.
引文
[1]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001:25-35.WANG J Y,XU J W.Principle and application of electrolytic machining[M].Beijing:National Defense Industry Press,2001:25-35.
    [2]朱荻.国外电解加工的研究进展[J].电加工与模具,2000(1):11-16.ZHU D.Research progress in foreign electrolytic processing[J].Electromachining&Mould,2000(1):11-16.
    [3]LEE J H,KANG S H,YANG D Y.Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness[J].CIRP Annals-Manufacturing Technology,2008,57(1):261-264.
    [4]KANG B S,KIM N S,KOBAYASHI S.Computer aided preform design in forging of an airfoil section blade[J].Int.J.Mach.Tools Manufact,1990,30(1):43-52.
    [5]全荣,陈尔昌,陈日耀.国外叶片锻造技术概况[J].航空工艺技术,1994(4):8-9.QUAN R,CHEN E C,CHEN R Y.Overview of foreign blade forging technology[J].Aviation Technology,1994(4):8-9.
    [6]ZHAN H,ZHAO W,WANG G.Manufacturing turbine blisks[J].Aircraft Engineering and Aerospace Technology,2000,72(3):247-251.
    [7]张磊,云乃彰,郭紫贵.带冠整体叶轮的应用及其加工工艺的研究[J].电加工与模具,2003(2):29-31,62.ZHANG L,YUN N Z,GUO Z G.Research on the application of the integral impeller with crown and its processing technology[J].Electromachining&Mould,2003(2):29-31,62.
    [8]谭春飞,于瑞丰,郝明钊,等.基于BP神经网络与遗传算法的涡轮安装角优化[J].石油机械,2018,46(2):1-4.TAN C F,YU R F,HAO M Z,et al.Optimization of turbine mounting angle based on BP neural network and genetic algorithm[J].China Petroleum Machinery,2018,46(2):1-4.
    [9]于浩,练章华,程兴莲,等.涡轮钻具轴承磨损后力学性能的数值模拟研究[J].石油机械,2015,43(9):1-5.YU H,LIAN Z H,CHENG X L,et al.Numerical simulation on mechanical properties of worn turbodrill bearing[J].China Petroleum Machinery,2015,43(9):1-5.
    [10]赵洪波,刘宝林,王建强,等.涡轮钻具叶片型线设计及流场模拟分析研究[J].探矿工程(岩土钻掘工程),2012,39(11):29-32.ZHAO H B,LIU B L,WANG J Q,et al.Research on turbine drill blade profile design and flow field simulation analysis[J].Exploration Engineering(Rock&Soil Drilling and Tunneling),2012,39(11):29-32.
    [11]冯进,符达良.涡轮钻具涡轮叶片造型设计新方法[J].石油机械,2000,28(11):9-12.FENG J,FU D L.New method for turbine drill turbine blade model design[J].China Petroleum Machinery,2000,28(11):9-12.
    [12]ZHANG H,LIU S H,YUE W C,et.al.Experimental study of surface characteristic in electrochemical machining of 35CrMo steel[J].Metals,2018,8(7):509.
    [13]张矿磊.整体叶盘叶栅通道电解加工流场仿真研究[D].南京:南京航空航天大学,2015.ZHANG K L.Simulation study on flow field of electrolytic machining of whole leaf disk cascade channel[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
    [14]陈修文.整体叶盘电解加工的流场仿真与试验[D].南京:南京航空航天大学,2012.CHEN X W.Flow field simulation and experiment of electrolytic machining of whole leaf disc[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.
    [15]刘国勇.流体力学数值方法[M].北京:冶金工业出版社,2016:6-9.LIU G Y.Numerical method of fluid mechanics[M].Beijing:Metallurgical Industry Press,2016:6-9.
    [16]张师师.计算流体动力学及其应用---CFD软件的原理与应用[M].武汉:华中科技大学出版社,2011:83.ZHANG S S.Computational fluid dynamics and its applications-CFD software principles and applications[M].Wuhan:Huazhong University of Science and Technology Press,2011:83.
    [17]徐正扬.发动机叶片精密电解加工关键技术研究[D].南京:南京航空航天大学,2008.XU Z Y.Research on key technology of precision electrochemical machining of engine blades[D].Nanjing:Nanjing University of Aeronauties and Astronauties,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700