用户名: 密码: 验证码:
西藏仁布县康雄金矿侵入岩锆石U-Pb年代学及成矿背景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of zircon U-Pb geochronology of intrusions and metallogenetic setting of Kangxiong gold deposit at Renbu area of Tibet, China
  • 作者:李应栩 ; 向安平 ; 李光明 ; 黄勇 ; 张林奎 ; 张志 ; 刘洪
  • 英文作者:LI Yingxu;XIANG Anping;LI Guangming;HUANG Yong;ZHANG Linkui;ZHANG Zhi;LIU Hong;Chengdu Center of China Geological Survey;
  • 关键词:锆石U-Pb年代 ; 成矿背景 ; 康雄金矿 ; 西藏
  • 英文关键词:zircon U-Pb geochronology;;metallogenetic setting;;Kangxiong gold deposit;;Tibet
  • 中文刊名:CDLG
  • 英文刊名:Journal of Chengdu University of Technology(Science & Technology Edition)
  • 机构:中国地质调查局成都地质调查中心;
  • 出版日期:2019-07-19 18:28
  • 出版单位:成都理工大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.215
  • 基金:国家重点基础研究发展计划项目(2016YFC0600308);; 国家自然科学基金项目(41702086);; 中国地质调查局地质调查项目(DD20190147)
  • 语种:中文;
  • 页:CDLG201904001
  • 页数:23
  • CN:04
  • ISSN:51-1634/N
  • 分类号:4-26
摘要
探讨西藏仁布县康雄金矿的形成背景。在野外地质调查基础上,对矿区出露的侵入岩开展了LA-ICP-MS锆石U-Pb年代学研究。结果表明,矿体附近出露岩浆岩的活动顺序依次为:晚侏罗世细粒花岗岩(150.5±1.8 Ma B.P., MSWD=0.18)、始新世早期石英闪长岩(48.94±0.56 Ma B.P., MSWD=0.29)、始新世中期黑云母花岗岩(46.91±0.53 Ma B.P., MSWD=0.38)、始新世中期含铜富石英伟晶岩(44.38±0.57 Ma B.P., MSWD=0.54)、始新世晚期闪长岩(41.90±0.61 Ma B.P., MSWD=0.31)、渐新世早期闪长玢岩(32.81 Ma B.P.)。这些岩浆岩均被康雄金矿的赋矿断裂切割,表明该矿床形成于32.81 Ma B.P.之后,明显晚于印度-亚洲陆-陆碰撞的主碰撞阶段(65~40 Ma B.P.),不同于雅鲁藏布江缝合带中的马攸木金矿和邦布金矿形成于强烈碰撞挤压背景,而是形成于渐新世末-中新世高原加厚岩石圈的拆沉环境。
        Field geological survey and LA-ICP-MS zircon U-Pb dating are carried out in order to study the metallogenetic setting of Kangxiong gold deposit in Renbu Country of Tibet, which occurred near the boundary of Gangdese block and Yarlung Tsangpo Suture Zone. LA-ICP-MS zircon U-Pb dating for the intrusions occurred in Kangxiong gold deposit obtained following results. There are late Jurassic fine grained biotite granite(150.5±1.8 Ma B.P., MSWD=0.18), early Eocene quartz diorite(48.94±0.56 Ma B.P., MSWD=0.29), middle Eocene medium-coarse grained biotite monzonitic granite(46.91±0.53 Ma B.P., MSWD=0.38), middle Eocene quartz-rich pegmatite with copper mineralization(44.38±0.57 Ma B.P., MSWD=0.54), late Eocene diorite(41.90±0.61 Ma B.P., MSWD=0.31), early Oligocene diorite porphyry(32.81 Ma B.P.). Kangxiong gold deposit was formed after 32.81 Ma B.P., later than the main collision stage of India and Asian plates(65~40 Ma B.P.), because all of the intrusions have been truncated by ore-bearing faults in the Kangxiong area. It is considered that the metallogenetic setting of Kangxiong gold deposit is different from that of Mayoumu and Bangbu. The former was formed in late Oligocene to Miocene Epoch, as a result of the delamination and thickening of plateau lithosphere, while the latter was formed in collisional compression environment.
引文
[1] 邓学国,曾攀,王建奎,等.西藏自治区仁布县念扎矿区金矿详查报告[R].成都:四川省冶金地质勘查院,2014.Deng X G,Zeng P,Wang J K,et al.Resource Investigation Report on Nianzha Primary Gold Deposit,Renbu Country,Xizang Autonomous Region,China[R].Chengdu:Sichuan Institute of Metallurgical Geology & Exploration,2014.(in Chinese)
    [2] 侯增谦,赵志丹,高永丰,等.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据[J].岩石学报,2006,22(4):761-774.Hou Z Q,Zhao Z D,Gao Y F,et al.Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J].Acta Petrologica Sinica,2006,22(4):761-774.(in Chinese)
    [3] 侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.Hou Z Q,Qu X M,Yang Z S,et al.Metallogenesis in Tibetan collisional orogenic belt:Ⅲ.Mineralization in post-collisional extension setting[J].Mineral Deposits,2006,25(6):629-651.(in Chinese)
    [4] Pan G T,Wang L Q,Li R S,et al.Tectonic evolution of the Qinghai-Tibet Plateau[J].Journal of Asian Earth Sciences,2012,53(2):3-14.
    [5] Xu Z Q,Dilek Y,Cao H,et al.Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J].Journal of Asian Earth Sciences,2015,105(1):320-337.
    [6] 多吉.西藏马攸木金矿床[M].北京:地质出版社,2009.Duo J.Mayum Gold Deposit[M].Beijing:Geological Publishing House,2009.(in Chinese)
    [7] Jiang S H,Nie F J,Hu P,et al.Mayum:An orogenic gold deposit in Tibet,China[J].Ore Geology Reviews,2009,36(1):160-173.
    [8] Sun X M,Wei H X,Zhai W,et al.Fluid inclusion geochemistry and Ar-Ar geochronology of the Cenozoic Bangbu orogenic gold deposit,southern Tibet,China[J].Ore Geology Reviews,2016,74:196-210.
    [9] Sun X M,Wei H X,Zhai W,et al.Bangbu:The largest Cenozoic orogenic gold deposit in southern Tibet,China[J].Acta Geologica Sinica,2014,88(S2):788-789.
    [10] 周峰,孙晓明,翟伟,等.藏南折木朗造山型金矿成矿流体地球化学和成矿机制[J].岩石学报,2011,27(9):2775-2785.Zhou F,Sun X M,Zhai W,et al.Geochemistry of ore forming fluid and metallogenic mechanism for Zhemulang gold deposit in southern Tibet,China[J].Acta Petrologica Sinica,2011,27(9):2775-2785.(in Chinese)
    [11] 侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:I.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.Hou Z Q,Yang Z S,Xu W Y,et al.Metallogenesis in Tibetan collisional orogenic belt:I.Mineralization in main collisional orogenic setting[J].Mineral Deposits,2006,25(4):337-358.(in Chinese)
    [12] 张雄.青藏高原雅鲁藏布江缝合带造山型金矿成矿作用研究[D].北京:中国地质大学档案馆,2017.Zhang X.Mineralization of Orogenic Gold Deposits in the Indus-Yarlung Tsangpo Suture Zone of Tibetan Plateau[D].Beijing:The Archive of China University of Geosciences,2017.(in Chinese)
    [13] 李应栩,宋旭波,梁金龙,等.西藏仁布县新夏岩金矿床成矿时代探讨[J].河北地质大学学报,2018,41(5):1-17.Li Y X,Song X B,Liang J L,et al.Discussion on the ore forming age of Xinxia primary gold deposit,Tibet,China[J].Journal of Hebei Geology University,2018,41(5):1-17.(in Chinese)
    [14] 宋旭波,李应栩,李光明,等.西藏仁布县帕夏始新世埃达克质岩的发现及其意义[J].沉积与特提斯地质,2017,38(1):11-22.Song X B,Li Y X,Li G M,et al.The discovery and geological significance of the Eocene adakitic rocks in Paxia,Renbu,Xizang[J].Sedimentary Geology and Tethyan Geology,2017,38(1):11-22.(in Chinese)
    [15] Guillot S,Mahéo G,de Sigoyer J,et al.Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks[J].Tectonophysics,2008,451:225-241.
    [16] Cao H W,Huang Y,Li G M,et al.Late Triassic sedimentary records in the northern Tethyan Himalaya:Tectonic link with Greater India[J].Geoscience Frontiers,2018,9(1):273-291.
    [17] 王立全,李定谋,潘桂棠,等.青藏高原矿产及成矿背景图及说明书(1∶1 500 000)[M].成都:成都地图出版社,2014.Wang L Q,Li D M,Pan G T,et al.Mineral and Metallogenic Background Maps of Qinghai-Tibet Plateau and Instructions[M].Chengdu:Chengdu Map Publishing House,2014.(in Chinese)
    [18] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.Pan G T,Mo X X,Hou Z Q,et al.Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J].Acta Petrologica Sinica,2006,22(3):521-533.(in Chinese)
    [19] 李光明,冯孝良,黄志英,等.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质,2000,20(4):38-46.Li G M,Feng X L,Huang Z Y,et al.The multiple island arc-basin systems and their evolution in the Gangdise tectonic belt,Xizang[J].Sedimentary Geology and Tethyan Geology,2000,20(4):38-46.(in Chinese)
    [20] Zhu D C,Zhao Z D,Niu Y L,et al.The Lhasa terrane:Record of a microcontinent and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301(1):241-255.
    [21] Yin A,Harrison T M,Murphy M A,et al.Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J].Geological Society of America Bulletin,1999,111(11):1644-1664.
    [22] Yin A,Harrison T M,Ryerson F J,et al.Tertiary structural evolution of the Gangdese Thrust System,southeastern Tibet[J].Journal of Geophysical Research Solid Earth,1994,99(B9):18175-18201.
    [23] Harris N B W,Xu R,Lewis C L,et al.Plutonic rocks of the 1985 Tibet geotraverse,Lhasa to Golmud[J].Philosophical Transactions of the Royal Society of London,Series A,Mathematical,Physical & Engineering Sciences,1988,327:145-168.
    [24] Dong G C,Mo X X,Zhao Z D,et al.Geochronologic constraints on the magmatic underplating of the Gangdese belt in the India-Eurasia collision:Evidence of SHRIMP Ⅱ zircon U-Pb dating[J].Acta Geologica Sinica,2005,79:787-794.
    [25] Mo X X,Dong G C,Zhao Z D,et al.Timing of magma mixing in Gangdise belt during the India-Asia collision:Zircon SHRIMP U-Pb dating[J].Acta Geologica Sinica,2005,79:66-76.
    [26] Ji W Q,Wu F Y,Liu C Z,et al.Geochronology and petrogenesis of granitic rocks in Gangdese batholith,southern Tibet[J].Science China Earth Sciences,2009,52(9):1240-1261.
    [27] Ji W Q,Wu F Y,Chung S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,2009,262(3):229-245.
    [28] 杨志明,侯增谦,夏代详,等.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示[J].矿床地质,2008,27(1):28-36.Yang Z M,Hou Z Q,Xia D X,et al.Relationship between western porphyry and mineralization in Qulong copper deposit of Tibet and its enlightenment to further exploration[J].Mineral Deposits,2008,27(1):28-36.(in Chinese)
    [29] 水新芳,贺振宇,张泽明,等.西藏冈底斯带东段早侏罗世英云闪长岩的岩浆起源及其对拉萨地体地壳演化的意义[J].地质学报,2016,90(11):3129-3152.Shui X F,He Z Y,Zhang Z M,et al.Magma origin of early Jurassic tonalites in the eastern Gangdese magmatic belt,southern Tibet and its implications for the crustal evolution of the Lhasa Terrane[J].Acta Geologica Sinica,2016,90(11):3129-3152.(in Chinese)
    [30] 管琪,朱弟成,赵志丹,等.西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义[J].岩石学报,2011,27(7):2083-2094.Guan Q,Zhu D C,Zhao Z D,et al.Zircon U-Pb chronology,geochemistry of the late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications[J].Acta Petrologica Sinica,2011,27(7):2083-2094.(in Chinese)
    [31] 侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1-12.Hou Z Q,Mo X X,Gao Y F,et al.Adakite,a possible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan Plateau and in northern Chile[J].Mineral Deposits,2003,22(1):1-12.(in Chinese)
    [32] 侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239-248.Hou Z Q,Gao Y F,Meng X J,et al.Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen[J].Acta Petrologica Sinica,2004,20(2):239-248.(in Chinese)
    [33] 侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,2005,24(2):108-121.Hou Z Q,Meng X J,Qu X M,et al.Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt:Constrains from rock phase and deep melting process[J].Mineral Deposits,2005,24(2):108-121.(in Chinese)
    [34] 黄丰,许继峰,陈建林,等.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?[J].岩石学报,2015,31(7):2089-2100.Huang F,Xu J F,Chen J L,et al.Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group:Products of continental marginal arc or intra-oceanic arc during the subduction of Neo-Tethys Ocean?[J].Acta Petrologica Sinica,2015,31(7):2089-2100.(in Chinese)
    [35] 莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.Mo X X,Zhao Z D,Deng J F,et al.Response of volcanism to the India-Asia collision[J].Earth Science Frontiers,2003,10(3):135-148.(in Chinese)
    [36] Zhao Z D,Mo X X,Zhang S Q,et al.Post-collisional magmatism in Wuyu basin,central Tibet:Evidence for recycling of subducted Tethyan oceanic crust[J].Science in China (Series D),2001,44(S):27-34.
    [37] Chen B,John B M,Suzuki K.Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton:Tectonic implications [J].Geology,2013,41:91-94.
    [38] 许继峰,邬建斌,王强,等.埃达克岩与埃达克质岩在中国的研究进展[J].矿物岩石地球化学通报,2014,33(1):6-13.Xu J F,Wu J B,Wang Q,et al.Research advances of adakites and adakitic rocks in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(1):6-13.(in Chinese)
    [39] Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546.
    [40] Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257:34-43.
    [41] 范晨子,胡明月,赵令浩,等.锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J].岩矿测试,2012,31(1):29-46.Fan C Z,Hu M Y,Zhao L H,et al.Advances in in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis,2012,31(1):29-46.(in Chinese)
    [42] Rubatto D,Gebauer D.Use of cathodoluminescence for U-Pb zircon dating by ion microprobe:Some examples from the western Alps[C]// Cathodoluminescence in Geosciences.Berlin,Heidelberg:Springer,2000.
    [43] Wu Y B,Zheng Y F.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin,2004,49:1554-1569.
    [44] Hanchar J M,Miller C F.Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories[J].Chemical Geology,1993,110:1-13.
    [45] Hanchar J M,Rudnick R L.Revealing hidden structures:The application of cathodoluminescence and back-scatter electrical imaging to dating zircons from lower crustal xenoliths[J].Lithos,1995,36:289-303.
    [46] Crofu F,Hanchar J M,Hoskin P W O,et al.Atlas of zircon textures[J].Reviews in Mineralogy and Geochemistry,2003,53:469-495.
    [47] Vavra G,Schmid R,Gebauer D.Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (southern Alps)[J].Contributions to Mineralogy & Petrology,1999,134(4):380-404.
    [48] Rubatto D,Gebauer G,Compagnoni R.Dating of eclogite-facies zircons:The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps)[J].Earth and Planetary Science Letters,1999,167:141-158.
    [49] Rubatto D,Hermann J.Zircon formation during fluid circulation in eclogites (Monviso,Western Alps):Implications for Zr and Hf budget in subduction zones[J].Geochimica et Cosmochimica Acta,2003,67(12):2173-2187.
    [50] Dubinska E,Bylinab P,Kozlowskia A,et al.U-Pb dating of serpentinization:Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite,SW Poland)[J].Chemical Geology,2004,203:183-203.
    [51] Liati A,Gebauer D.Constraining the prograde and retrograde P-T-t,path of Eocene H P,rocks by SHRIMP dating of different zircon domains:Inferred rates of heating,burial,cooling and exhumation for central Rhodope,northern Greece[J].Contributions to Mineralogy and Petrology,1999,135(4):340-354.
    [52] Rizvanova N G,Lenchenkov O A,Belous A E,et al.Zircon reaction and stability of the U-Pb isotope system during the interaction with carbonate fluid:Experimental hydrothermal study[J].Contributions to Mineralogy and Petrology,2000,139:101-134.
    [53] Mezger K,Krogstad E J.Interpretation of discordant U-Pb zircon ages:An evaluation[J].Journal of Metamorphic Geology,1997,15(1):127-140.
    [54] Bingen B,Austrheim H,Whitehouse M.Ilmenite as a source for zirconium during high-grade metamorphism?Textural evidence from the Caledonides of western Norway and implications for zircon geochronology[J].Journal of Petrology,2001,42(2):355-375.
    [55] Lee J,Williams I,Ellis D.Pb,U and Th diffusion in nature zircon[J].Nature,1997,390(13):159-162.
    [56] Cherniak D J,Watson E B.Pb diffusion in zircon[J].Chemical Geology,2000,172:5-24.
    [57] 赵子福,郑永飞,魏春生,等.大别山沙村和椒子岩基性-超基性岩锆石U-Pb定年、元素和碳氧同位素地球化学研究[J].高校地质学报,2003,9(2):139-171.Zhao Z F,Zheng Y F,Wei C S,et al.Zircon U-Pb age,element and isotope geochemistry of Mesozoic mafic-ultramafic rocks at Shacun and Jiaoziyan in North Dabie[J].Geological Journal of China Universities,2003,9(2):139-171.(in Chinese)
    [58] Vavra G,Gebauer D,Schmid R,et al.Multiple zircon growth and recrystallization during polyphase late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps):An ion microprobe (SHRIMP) study[J].Contributions to Mineralogy and Petrology,1996,122(4):337-358.
    [59] Hermann J,Rubatto D,Korsakov A,et al.Multiple zircon growth during fast exhumation of diamondiferous,deeply subducted continental crust (Kokchetav Massif,Kazakhstan)[J].Contributions to Mineralogy & Petrology,2001,141(1):66-82.
    [60] Williams I S,HergtJ M.U-Pb dating of Tasmanian dolerites:A cautionary tale of SHRIMP analysis of high-U zircon[C]// Beyond 2000:New Frontiers in Isotope Geoscience,Lorne,Abstracts and Proceedings.185-188.
    [61] White L T,Ireland T R.High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations[J].Chemical Geology,2012,306/307(19):78-91.
    [62] Li Q L,Li X H,Liu Y,et al.Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J].Journal of Analytical Atomic Spectrometry,2010,25(7):1107-1113.
    [63] Li Q L,Li X H,Lan Z W,et al.Monazite and xenotime U-Th-Pb geochronology by ion microprobe:Dating highly fractionated granites at Xihuashan tungsten mine,SE China[J].Contributions to Mineralogy & Petrology,2013,166(1):65-80.
    [64] Gao Y Y,Li X H,Griffin W L,et al.Screening criteria for reliable U-Pb geochronology and oxygen isotope analysis in uranium-rich zircons:A case study from the Suzhou A-typegranite,SE China[J].Lithos,2014,192/195:180-191.
    [65] 李秋立.离子探针锆石U-Pb定年的“高U效应”[J].矿物岩石地球化学通报,2016,35(3):405-412.Li Q L.“High-U Effect” during SIMS zircon U-Pb dating[J].Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3):405-412.(in Chinese)
    [66] Krogh T E.Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique[J].Geochimica et Cosmochimica Acta,1982,46(4):637-649.
    [67] Mattinson J M.Zircon U-Pb chemical abration (“CA-TIMS”) method:Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages[J].Chemical Geology,2005,220(1/2):47-66.
    [68] 周士旭,朱弟成,张亮亮,等.藏东同普二叠纪高分异花岗岩的锆石U-Pb年龄和岩石成因[J].岩石学报,2017,33(8):2509-2522.Zhou S X,Zhu D C,Zhang L L,et al.Zircon U-Pb age and petrogenesis of the Permian highly fractionated granites in Tongpu,eastern Tibet[J].Acta Petrologica Sinica,2017,33(8):2509-2522.(in Chinese)
    [69] 徐晓春,范子良,王蒙,等.安徽铜陵焦冲辉石闪长岩体中的两类锆石及其地质意义[J].地质学报,2018,92(1):28-40.Xu X C,Fan Z L,Wang M,et al.Two types of zircons from the Jiaochong pyroxene diorite pluton in the Tongling area of Anhui Province and their geological significance[J].Acta Geologica Sinica,2018,92(1):28-40.(in Chinese)
    [70] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications,1989,42(1):313-345.
    [71] Wendt I,Carl C.The statistical distribution of the mean squared weighted deviation[J].Chemical Geology:Isotope Geoscience Section,1991,86:275-285.
    [72] Tomaschek F,Kennedy A K,Villa I M,et al.Zircons from Syros,Cyclades,Greece-recrystallization and mobilization of zircon during high-pressure metamorphism[J].Journal of Petrology,2003,44(11):1977-2002.
    [73] Pidgeon R T,Nemchin A A,Hitchen G J.Internal structures of zircons from Archaean granites from the darling range batholith:Implications for zircon stability and the interpretation of zircon U-Pb ages[J].Contributions to Mineralogy & Petrology,1998,132(3):288-299.
    [74] Corfu F.Atlas of zircon textures[J].Reviews in Mineralogy and Geochemistry,2003,53(1):469-500.
    [75] Belousova E A,Griffin W L,Pearson N J.Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons[J].Mineralogical Magazine,1998,62(3):355-366.
    [76] Geisler T,Ulonska M,Schleicher H,et al.Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions[J].Chemical Geology,2001,141:53-65.
    [77] Hoskin P W O,Black L P.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology,2010,18(4):423-439.
    [78] Pidgeon R T.Recrystallisation of oscillatory zoned zircon:Some geochronological and petrological implications[J].Contributions to Mineralogy & Petrology,1992,110(4):463-472.
    [79] Rizvanova N G,Levchenkov O A,Belous A E,et al.Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid:Experimental hydrothermal study[J].Contributions to Mineralogy and Petrology,2000,139(1):101-114.
    [80] 李建康.花岗伟晶岩结构结晶动力学的研究进展[J].地学前缘,2012,19(4):165-172.Li J K.Research developments of crystallization dynamics for pegmatitic texture[J].Earth Science Frontiers,2012,19(4):165-172.(in Chinese)
    [81] Larson K P,Price R A,Archibald D A.Tectonic implications of 40Ar/39Ar muscovite dates from the Mt.Haley stock and Lussier River stock,near Fort Steele,British Columbia[J].Canadian Journal of Earth Sciences,2006,43(11):1673-1684.
    [82] Culshaw N,Mosonyi E,Reynolds P.New 40Ar/39Ar laser single-grain ages of muscovites from mylonitic schists in the Rodna Mountains,Eastern Carpathians,Romania:Correlations with microstructure[J].International Journal of Earth Sciences,2012,101(1):291-306.
    [83] 李光明,曾庆贵,雍永源,等.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例[J].矿床地质,2005,24(6):595-602.Li G M,Zeng Q G,Yong Y Y,et al.Discovery of epithermal Au-Sb deposits in Gangdese metallogenic belt of Tibet and its significance:Case study of Longruri Au-Sb deposit[J].Mineral Deposits,2005,24(6):595-602.(in Chinese)
    [84] 刘云飞,侯增谦,杨志明,等.西藏弄如日金矿流体包裹体研究[J].岩石学报,2011,27(7):2150-2158.Liu Y F,Hou Z Q,Yang Z M,et al.Study on fluid inclusion of Nongruri gold deposit,Tibet,China[J].Acta Petrologica Sinica,2011,27(7):2150-2158.(in Chinese)
    [85] 黄瀚霄,李光明,董随亮,等.西藏弄如日金矿床蚀变绢云母40Ar-39Ar年龄及其地质意义[J].大地构造与成矿学,2012,36(4):607-612.Huang H X,Li G M,Dong S L,et al.40Ar-39Ar dating of sericite in the Nongruri gold deposit of Tibet and its geological significance[J].Geotectonica et Metallogenia,2012,36(4):607-612.(in Chinese)
    [86] 董随亮,黄勇,李光明,等.藏南姐纳各普金矿地质特征及成矿时代约束——对扎西康矿集区铅锌金锑成矿系统的启示[J].资源与产业,2017,19(5):56-64.Dong S L,Huang Y,Li G M,et al.Geology and mineralization dating of Jienagepu gold deposit in southern Tibet with implication from Zhaxikang Pb-Zn-Au-Sb metallogenic system[J].Resources & Industries,2017,19(5):56-64.(in Chinese)
    [87] 郑有业,多吉,马国桃,等.藏南查拉普岩金矿床特征、发现及时代约束[J].地球科学,2007,32(2):185-193.Zheng Y Y,Duo J,Ma G T,et al.Mineralization characteristics,discovery and age restriction of Chalapu hardrock gold deposit,southern Tibet[J].Earth Science,2007,32(2):185-193.(in Chinese)
    [88] 钟婉婷,李应栩,李光明,等.西藏冈底斯成矿带达布矿区色日普金矿流体包裹体研究[J].地质学报,2015,89(3):599-607.Zhong W T,Li Y X,Li G M,et al.Fluid inclusion of the Seripu gold deposit in Dabu of Gangdise,Tibet[J].Acta Geologica Sinica,2015,89(3):599-607.(in Chinese)
    [89] 黄瀚霄,李光明,刘洪,等.冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床[J].中国地质,2018,45(3):628-629.Huang H X,Li G M,Liu H,et al.A low sulfide epithermal gold-silver polymetallic deposit newly discovered in the western section of the Gangdise metallogenic belt[J].Geology in China,2018,45(3):628-629.(in Chinese)
    [90] 李应栩,宋旭波,李光明,等.西藏曲水县色甫金铜矿成矿流体性质与来源[J/OL].地球科学,[2019-01-28网络优先出版].http://kns.cnki.net/kcms/detail/42.1874.P.20181218.1108.007.html.Li Y X,Song X B,Li G M,et al.Properties and sources of ore-forming fluids in Sefu gold-copper deposit,Quxu Country,Tibet,China[J/OL].Earth Science,[2019-01-28].http://kns.cnki.net/kcms/detail/42.1874.P.20181218.1108.007.html.(in Chinese)
    [91] 张刚阳,郑有业,张建芳,等.西藏沙拉岗锑矿控矿构造及成矿时代约束[J].岩石学报,2011,27(7):2143-2149.Zhang G Y,Zheng Y Y,Zhang J F,et al.Ore-control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet,China[J].Acta Petrologica Sinica,2011,27(7):2143-2149.(in Chinese)
    [92] Grün R,Tani A,Gurbanov A,et al.A new method for the estimation of cooling and denudation rates using paramagnetic centers in quartz:A case study on the Eldzhurtinskiy Granite,Caucasus[J].Journal of Geophysical Research:Solid Earth,1999,104(B8):17531-17549.
    [93] Toyoda S,Nagashima K,Yamamoto Y.ESR signals in quartz:Applications to provenance research - A review[J].Quaternary International,2016,397:258-266.
    [94] Lee T Y,Lawver L A.Cenozoic plate reconstruction of Southeast Asia[J].Tectonophysics,1995,251:85-138.
    [95] 侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006,33(2):348-359.Hou Z Q,Mo X X,Yang Z M,et al.Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J].Geology in China,2006,33(2):348-359.(in Chinese)
    [96] 侯增谦,郑远川,杨志明,等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质,2012,31(4):647-670.Hou Z Q,Zheng Y C,Yang Z M,et al.Metallogenesis of continental collision setting:Part Ⅰ.Gangdese Cenozoic porphyry Cu-Mo systems in Tibet[J].Mineral Deposits,2012,31(4):647-670.(in Chinese)
    [97] Leech M L,Singh S,Jain A K,et al.The onset of India-Asia continental collision:Early,steep subduction required by the timing of UHP metamorphism in the western Himalaya[J].Earth and Planetary Science Letters,2005,234:83-97.
    [98] 岳雅慧,丁林.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J].岩石学报,2006,22(4):855-866.Yue Y H,Ding L.40Ar/39Ar geochronology,geochemical characteristics and genesis of the Linzhou basic dikes,Tibet[J].Acta Petrologica Sinica,2006,22(4):855-866.(in Chinese)
    [99] Mo X X,Hou Z Q,Niu Y L,et al.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet[J].Lithos,2007,96:225-242.
    [100] Zheng Y C,Hou Z Q,Li W,et al.Petrogenesis and geological implications of the Oligocene Chongmuda-Mingze adakite-like intrusions and their mafic enclaves,southern Tibet[J].Journal of Geology,2012,120(6):647-669.
    [101] 侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521-543.Hou Z Q,Pan G T,Wang A J,et al.Metallogenesis in Tibetan collisional orogenic belt:Ⅱ.Mineralization in late-collisional transformation setting[J].Mineral Deposits,2006,25(5):521-543.(in Chinese)
    [102] Hou Z Q,Gao Y F,Qu X M,et al.Origin of adakitic intrusives generated during mid-Miocene east-west extension in South Tibet[J].Earth and Planetary Science Letters,2004,220:139-155.
    [103] 侯增谦,郑远川,耿元生.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J].矿床地质,2015,34(4):641-674.Hou Z Q,Zheng Y C,Geng Y S.Metallic refertilization of lithosphere along cratonic edges and its control on Au,Mo and REE ore systems[J].Mineral Deposits,2015,34(4):641-674.(in Chinese)
    [104] 张立雪,王青,朱弟成,等.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报,2013,29(11):3681-3688.Zhang L X,Wang Q,Zhu D C,et al.Mapping the Lhasa Terrane through zircon Hf isotopes:Constraints on the nature of the crust and metallogenic potential[J].Acta Petrologica Sinica,2013,29(11):3681-3688.(in Chinese)
    [105] 唐菊兴,王登红,汪雄武,等.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,2010,31(4):495-506.Tang J X,Wang D H,Wang X W,et al.Geological features and metallogenic model of the Jiama copper-polymetallic deposit in Tibet[J].Acta Geoscientia Sinica,2010,31(4):495-506.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700