用户名: 密码: 验证码:
基于GPS观测研究中国东北地区现今地壳形变特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Current Crustal Deformation of Northeast China Deduced from GPS Observations
  • 作者:于吉鹏 ; 孟国杰 ; 苏小宁 ; Nikolay ; Shestakov ; Mikhail ; Gerasimenko ; Hiroaki ; Takahashi ; Mako ; Ohzono ; 刘泰 ; 李承涛
  • 英文作者:YU Ji-peng;MENG Guo-jie;SU Xiao-ning;Nikolay Shestakov;Mikhail Gerasimenko;Hiroaki Takahashi;Mako Ohzono;LIU Tai;LI Cheng-tao;Key Laboratory of Earthquake Forecast, Institute of Earthquake Forecasting,CEA;Far Eastern Federal University;Institute of Applied Mathematics,Far Eastern Branch of Russian Academy of Sciences;Institute of Seismology and Volcanology, Hokkaido University;
  • 关键词:应变率场 ; 多尺度球面小波 ; 日本东北M_W9.0大地震 ; 震后粘弹性松弛 ; 中国东北地区
  • 英文关键词:Northeast China;;Multi-scale spherical wavelet;;Strain rate field;;the 2001 M_W9.0 Tohoku earthquake;;Post-seismic viscoelastic relaxation
  • 中文刊名:DIZN
  • 英文刊名:Earthquake
  • 机构:中国地震局地震预测重点实验室(地震预测研究所);Far Eastern Federal University;Institute of Applied Mathematics,Far Eastern Branch of Russian Academy of Sciences;Institute of Seismology and Volcanology,Hokkaido University;
  • 出版日期:2019-07-15
  • 出版单位:地震
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(41874024,41604007,41461164004);; 国家国际科技合作专项(2015DFR21100);; 中国地震局地震预测研究所基本科研业务费专项(2016IES010203);; 俄罗斯远东联邦大学研究专项(17-55-53110_a)
  • 语种:中文;
  • 页:DIZN201903002
  • 页数:17
  • CN:03
  • ISSN:11-1893/P
  • 分类号:13-29
摘要
基于中国东北和俄罗斯远东东南部2012—2017年的GPS观测数据,利用包含年周期、半年周期、线性项和阶跃项的函数模型拟合GPS站坐标时间序列,得到ITRF2014下的速度场,并进一步转换到欧亚参考框架下得到相对欧亚板块的速度场。基于多尺度球面小波方法解算应变率场,并分析了其空间分布特征,同时研究了各GPS站对2011年日本东北M_W9.0大地震的震后松弛响应特征和背景形变场特征。结果表明:①若不扣除日本东北大地震的松弛效应,相对欧亚板块中国东北主体上表现为东南方向运动,在依兰—伊通断裂和嫩江断裂带之间,地壳表现为逆时针旋转,其他区域向东南方向运动,方向一致性较好,在敦化—密山断裂东侧速度大小明显增加。敦化—密山断裂和依兰—伊通断裂两侧拉张量分别为3.96±0.04 mm/a和0.71±0.05 mm/a,两条断裂的剪切运动不明显。总体上,面应变率显示出NW—SE向的拉张和NE—SW向的挤压,面应变率显示出依兰—伊通断裂南端、嫩江断裂带北端和俄罗斯远东东南部呈挤压状态。在依兰—伊通断裂、敦化—密山断裂南侧以及俄罗斯远东东南部最大剪应变率相对较大。②各GPS测站对2011年日本东北M_W9.0大地震震后松弛的响应整体上表现为东南向运动,松弛形变量随震中距增加而减小。松弛效应的面应变率总体上表现为NW—SE向的拉张和NE—SW向的挤压,面应变率显示出依兰—伊通、敦化—密山断裂南端、嫩江断裂带北端以及俄罗斯远东地区具有挤压特征,其他地区表现为拉张特征。中国与俄罗斯远东边界南端存在一个明显的最大剪应变率高值区。③扣除日本东北M_W9.0大地震引起的松弛变形后,总体上面应变率仍然表现为NW—SE向的拉张和NE—SW向的挤压,面应变率最大值仍然位于依兰—伊通断裂和敦化—密山断裂南端、第二松花江断裂带以及俄罗斯远东和中国边界最南段。在依兰—伊通断裂、敦化—密山断裂南端,中国与俄罗斯远东边界南端的最大剪应变率高值区仍然存在,表明这些地区应变积累较快,并且一直在持续。
        Using the GPS data observed from northeastern China and southeast of Russian Far East over the period of 2012—2017, we derived a velocity field within the ITRF2014, by fitting GPS time series with a multi-term functional model incorporating annual and semi-annual signals, linear trend as well as offsets. Subsequently, we transformed the velocity field into a Eurasia-fixed velocity field and analyzed its spatial characteristics. By taking the multi-scale spherical wavelet approach, we calculated strain rate tensors and analyzed the spatial distribution of various resolving scales. Meanwhile, we investigated the contribution due to the post-seismic relaxation of the 2011 M_W9.0 Tohoku earthquake, Japan and the background deformation field characteristics. The results show that if the relaxation effect of the great earthquake in northeastern Japan is not deducted, the velocity field relative to the Eurasian plate generally moved southwestward. The movements between Yilan-Yitong Fault and Nenjiang Fault is characterized by counter-clockwise rotation, but other regions moves southeastward with a good consistency in orientation and an increase in intensity east of Mishan-Dunhua Fault. The motions for the Dunhua-Mishan Fault and the Yilan-Yitong Fault are characterized by extensions of 3.96±0.04 mm/a and 0.71±0.05 mm/a, respectively. The fault-parallel motion is negligible for the two faults. Principal strain rates were dominated by NW-SE extension and NE-SW compression. The dilation rates show that it is undergoing compression for the southern portion of Yilan-Yitong Fault, northern end of the Nenjiang Fault and the southeast of Russian Far East. The deformations were generally oriented SE due to the post-seismic viscoelastic relaxation of the 2011 M_W9.0 Tohoku earthquake, inversely proportional with the epicentral distances. The corresponding principal strain rates were also characterized by NW-SE extension and NE-SW compression. The dilations were characterized as contraction for the southern segment of the Yilan-Yitong Fault and the Mishan-Dunhua Fault, the northern end of the Nenjing Fault and Russian Far East. Localized maximum shear rates were identified around the southern borderland between northeastern China and the southeast of Russian Far East. After the subtraction of the contribution due to the viscoelastic relaxation from the observed velocity, the principal strain rates were also characterized by NW-SE extension and NE-SW compression. The dilation rates were significant in the southern end of the Yilan-Yitong Fault and the Mishan-Dunhua Fault, over the Second Songhuajiang Fault and the southern borderland between northeast China and Russian Far East. The maximum shear rates are still significant for the above regions, indicative of fast and continuing strain buildup there.
引文
[1] 唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995(1):16-30.
    [2] Griffin W L,Zhang A,O'Reilly S Y,et al.Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton[M]//Mantle Dynamics and Plate Interactions in East Asia.American Geophysical Union (AGU),1998:107-126.
    [3] 孟宪森,郑辉,姜锦华.西太平洋板块俯冲与我国东北和华北块体地震活动[J].防灾减灾学报,2003,19(1):12-18.
    [4] 闵伟,焦德成,周本刚,等.依兰—伊通断裂全新世活动的新发现及其意义[J].地震地质,2011,33(1):141-150.
    [5] 索艳慧,李三忠,曹现志,等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘,2017(4):249-267.
    [6] 孟宪森,关玉辉,朱福祥,等.东北北部地区地震活动与震后早期趋势判断[J].自然灾害学报,2002,11(3):27-32.
    [7] 孙文福,关英梅,李芳,等.东北地区地震活动规律及发展趋势研究[J].防灾减灾学报,2004,20(1):9-18.
    [8] 孟国杰,申旭辉,伍吉仓,等.东北地区现今地壳形变特征研究[J].大地测量与地球动力学,2007,27(1):19-23.
    [9] Yue H,Lay T.Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (MW9.1)[J].Geophysical Research Letters,2011,38(7):752-767.
    [10] Simons M,Minson S E,Sladen A,et al.The 2011 Magnitude 9.0 Tohoku-Oki Earthquake:Mosaicking the Megathrust from Seconds to Centuries[J].Science,2011,332(6036):1421-1425.
    [11] Wang L,Liu J,Zhao J,et al.Tempo-Spatial Impact of the 2011 M9 Tohoku-Oki Earthquake on Eastern China[J].Pure & Applied Geophysics,2016,173(1):35-47.
    [12] 陈为涛,甘卫军,肖根如,等.3·11日本大地震对中国东北部地区地壳形变态势的影响[J].地震地质,2012,34(3):425-439.
    [13] 王敏,李强,王凡,等.全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J].科学通报,2011(20):1593-1596.
    [14] 苏小宁,孟国杰,王振.基于多尺度球面小波解算GPS应变场的方法及应用[J].地球物理学报,2016,59(5):1585-1595.
    [15] Wu W W,Su X N,Meng G J,et al.Crustal deformation prior to the 2017 Jiuzhaigou,northeastern Tibetan Plateau (China),MS7.0 earthquake derived from GPS observations [J].Remote Sens,2018,10,2028;doi:10.3390/rs10122028.
    [16] Su X N,Yao L B,Wu W W,et al.Crustal Deformation on the Northeastern Margin of the Tibetan Plateau from Continuous GPS Observations [J].Remote Sens,2019,11,34;doi:10.3390/rs11010034.
    [17] GAMIT Reference Manual.GPS Analysis at MIT Release.10.4.Massachusetts Institute Technology,2010a,Massachusetts Institute Technology,2010a,http://wwwgpsg.mit.edu/simon/gtgk/index.htm.
    [18] Herring T A,King R W,McClusky S C.GLOBK Reference Manual.Global Kalman filter VLBI and GPS analysis program.Release.10.4.Massachusetts Institute Technology,2010b http://www-gpsg.mit.edu/simon/gtgk/index.htm.
    [19] Meng G J,Su X N,et al.Heterogeneous strain regime in the eastern margin of Tibetan Plateau and its tectonic implications[J].Earthquake Science,2015,28(1):1-10.
    [20] Altamimi Z,Collilieux X,Métivier L.ITRF2008:an improved solution of the international terrestrial reference frame[J].Journal of Geodesy,2011,85(8):457-473.
    [21] Bogdanova I,Vandergheynst P,Antoine J P,et al.Stereographic wavelet frames on the sphere[J].Applied & Computational Harmonic Analysis,2005,19(2):223-252.
    [22] 程鹏飞,文汉江,孙罗庆,等.中国大陆GPS速度场的球面小波模型及多尺度特征分析[J].测绘学报,2015,44(10):1063-1070.
    [23] Savage J C,Gan W,Svarc J L.Strain accumulation and rotation in the Eastern California Shear Zone[J].Journal of Geophysical Research,2001,106.
    [24] Tanaka Y,Okuno J,Okubo S,et al.A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (II)-horizontal displacement[J].Geophysical Journal International,2010,170(3):1031-1052.
    [25] Gao S,Fu G,Liu T,et al.A New Code for Calculating Post-seismic Displacements as Well as Geoid and Gravity Changes on a Layered Visco-Elastic Spherical Earth[J].Pure & Applied Geophysics,2016,174(3):1-14.
    [26] Zhao Q,Fu G Y,Wu W W,et al.Spatial-temporal evolution and corresponding mechanism of the far-field post-seismic displacements following the 2011 MW9.0 Tohoku earthquake[J].Geophysical Journal International,2018,214(3):1774-1782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700