用户名: 密码: 验证码:
光强对杉木幼苗形态特征和叶片非结构性碳含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings
  • 作者:刘青青 ; 马祥庆 ; 黄智军 ; 郭思 ; 王大洋 ; 王昌辉 ; 刘博
  • 英文作者:LIU Qingqing;MA Xiangqing;HUANG Zhijun;GUO Si;WANG Dayang;WANG Changhui;LIU Bo;College of Forestry, Fujian Agriculture and Forestry University;Engineering Research Center of Chinese Fir,State Forestry Administration;
  • 关键词:杉木 ; 非结构性碳 ; 比叶面积 ; 生物量分配 ; 适应
  • 英文关键词:Chinese fir;;non-structural carbohydrate;;specific leaf area;;biomass allocation;;acclimation
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建农林大学林学院;国家林业局杉木工程技术研究中心;
  • 出版日期:2019-04-01 09:13
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31570448,31670714)
  • 语种:中文;
  • 页:STXB201912024
  • 页数:8
  • CN:12
  • ISSN:11-2031/Q
  • 分类号:247-254
摘要
选取南方重要的造林树种杉木(Cunninghamia lanceolata(Lamb.)Hook)幼苗为研究对象,通过搭建遮荫棚设置5个光照强度(分别为自然光照的100%、60%、40%、15%和5%),研究了幼苗在不同光照强度下的生长形态、生物量积累及分配、叶片的非结构性碳含量(NSC)特征。结果显示:(1)叶长、叶宽和叶面积在40%光照强度下最大,而比叶面积和叶片相对含水量随着光照强度的降低呈递增趋势;(2)随着光照强度的降低,杉木幼苗各器官生物量下降,根生物量比和根冠比降低,茎和叶生物量比增加;(3)杉木幼苗在60%光照强度下叶片非结构性碳含量最高,5%光照强度下含量最低;(4)杉木幼苗比叶面积与叶生物量以及与非结构性碳含量之间存在极显著的负相关关系(P<0.01),叶生物量与非结构性碳含量之间存在极显著的正相关关系(P<0.01)。杉木幼苗能够通过形态学上的可塑性来适应不同的光强环境,提高光竞争能力和生存适合度,但在5%光照强度下,由于较难维持碳收支平衡而不利于其生长和存活。
        We selected Chinese fir seedlings to study the effects of light intensity on seedling growth, morphology, biomass, biomass allocation, and non-structural carbohydrate(NSC) content in the leaves using a shade house experiment(100%, 60%, 40%, 15%, and 5% of full sunlight). The results showed that:(1) The greatest leaf length, leaf width, and leaf area occurred under 40% sunlight, whereas the specific leaf area and relative water content increased as light intensity decreased;(2) As light intensity decreased, the total biomass, root biomass, stem biomass, and leaf biomass of seedlings declined, the stem biomass ratio and leaf biomass ratio increased, and the root biomass ratio and root to shoot ratio decreased;(3) The greatest and lowest NSC content occurred under 60% and 5% sunlight, respectively;(4) The specific leaf area was significantly negatively correlated with leaf biomass and NSC content(P<0.01), whereas leaf biomass had a strong positive correlation with NSC content(P<0.01). In summary, Chinese fir seedlings might adapt to a shaded environment by adjusting their morphological characteristics to improve their competitive ability and fitness, although seedlings had difficulty maintaining a carbon balance, which led to poor growth and survival, under 5% sunlight.
引文
[1] Katahata S I,Naramoto M,Kakubari Y,Mukai Y.Photosynthetic capacity and nitrogen partitioning in foliage of the evergreen shrub Daphniphyllum humile along a natural light gradient.Tree Physiology,2007,27(2):199- 208.
    [2] Lu D L,Wang G G,Yan Q L,Gao T,Zhu J J.Effects of gap size and within-gap position on seedling growth and biomass allocation:Is the gap partitioning hypothesis applicable to the temperate secondary forest ecosystems in Northeast China?Forest Ecology and Management,2018,429:351- 362.
    [3] 秦舒浩,李玲玲.遮光处理对西葫芦幼苗形态特征及光合生理特性的影响.应用生态学报,2006,17(4):653- 656.
    [4] Wright I J,Reich P B,Westoby M,Ackerly D D,Baruch Z,Bongers F,Bares J C,Chapin T,Cornelissen J H C,Diemer M,Flexas J,Garnier E,Groom P K,Gulias J,Hikosaka K,Lamont B B,Lee T,Lee W,Lusk C,Midgley J J,Navas M L,Niinemets ü,Oleksyn J,Osada N,Poorter H,Poot P,Prior L,Pyankov V I,Roumet C,Thomas S C,Tjoelker M G,Veneklaas E J,Villar R.The worldwide leaf economics spectrum.Nature,2004,428(6985):821- 827.
    [5] Dai Y J,Shen Z G,Liu Y,Wang L L,Hannaway D,Lu H F.Effects of shade treatments on the photosynthetic capacity,chlorophyll fluorescence,and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg.Environmental and Experimental Botany,2009,65(2/3):177- 182.
    [6] Mokany K,Raison R J,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomes.Global Change Biology,2006,12(1):84- 96.
    [7] Lockhart B R,Gardiner E S,Hodges J D,Ezell A W.Carbon allocation and morphology of cherry bark oak seedlings and sprouts under three light regimes.Annals of Forest Science,2008,65(8):801- 801.
    [8] 张敏.东北次生林主要树木种子萌发、幼苗存活与早期生长对光环境的响应[D].北京:中国科学院研究生院,2012.
    [9] 于丽敏,王传宽,王兴昌.三种温带树种非结构性碳水化合物的分配.植物生态学报,2011,35(12):1245- 1255.
    [10] Poorter L,Kitajima K.Carbohydrate storage and light requirements of tropical moist and dry forest tree species.Ecology,2007,88(4):1000- 1011.
    [11] 李婷婷,薛璟祺,王顺利,薛玉前,胡凤荣,张秀新.植物非结构性碳水化合物代谢及体内转运研究进展.植物生理学报,2018,54(1):25- 35.
    [12] Liu B,Liu Q Q,Daryanto S,Guo S,Huang Z J,Wang Z N,Wang L X,Ma X Q.Responses of Chinese fir and Schima superba seedlings to light gradients:Implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures.Forest Ecology and Management,2018,419- 420:51- 57.
    [13] 明安刚,刘世荣,李华,曾冀,孙冬婧,雷丽群,蒙明君,陶怡,明财道.近自然化改造对马尾松和杉木人工林生物量及其分配的影响.生态学报,2017,37(23):7833- 7842.
    [14] 朱晨曦,刘志刚,于洋洋,刘青青,赵冲,郑晓阳,王正宁,刘博.杉木人工林种子雨组成和季节动态.应用生态学报,2018,29(5):1515- 1522.
    [15] 李俊清,李景文.中国东北小兴安岭阔叶红松林更新及其恢复研究(英文).生态学报,2003,23(7):1268- 1277.
    [16] 刘青青,马祥庆,李艳娟,庄正,杜子龙,邢先双,刘博.杉木种子萌发及幼苗生长对光强的响应.应用生态学报,2016,27(12):3845- 3852.
    [17] 刘柿良,马明东,潘远智,魏刘利,何成相,杨开茂.不同光环境对桤木幼苗生长和光合特性的影响.应用生态学报,2013,24(2):351- 358.
    [18] Ma X H,Song L L,Yu W W,Hu Y Y,Liu Y,Wu J S,Ying Y Q.Growth,physiological,and biochemical responses of Camptotheca acuminata seedlings to different light environments.Frontiers in Plant Science,2015,6:321.
    [19] 唐辉,王满莲,韦记青,韦霄,蒋运生,柴胜丰.林下与全光下地枫皮叶片形态和光合特性的比较.植物生理学通讯,2010,46(9):949- 952.
    [20] Yamashita N,Koike N,Ishida A.Leaf ontogenetic dependence of light acclimation in invasive and native subtropical trees of different successional status.Plant,Cell & Environment,2002,25(10):1341- 1356.
    [21] Niinemets ü.The controversy over traits conferring shade-tolerance in trees:ontogenetic changes revisited.Journal of Ecology,2006,94(2):464- 470.
    [22] 胡启鹏,郭志华,李春燕,马履一.不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征.生态学报,2008,28(7):3262- 3270.
    [23] Moreira A S F P,de Lemos Filho J P,Zotz G,Isaias R M D S.Anatomy and photosynthetic parameters of roots and leaves of two shade-adapted orchids,Dichaea cogniauxianaShltr.and Epidendrum secundum Jacq.Flora-Morphology,Distribution,Functional Ecology of Plants,2009,204(8):604- 611.
    [24] Mediavilla S,Escudero A.Differences in biomass allocation patterns between saplings of two co-occurring Mediterranean oaks as reflecting different strategies in the use of light and water.European Journal of Forest Research,2010,129(4):697- 706.
    [25] 郭志华,王荣,肖文发.不同光环境下喜树与四川大头茶幼苗的表型可塑性.林业科学,2009,45(9):6- 12.
    [26] Sala A,Woodruff D R,Meinzer F C.Carbon dynamics in trees:feast or famine?Tree Physiology,2012,32(6):764- 775.
    [27] Zhang M,Zhu J J,Li M C,Zhang G Q,Yan Q L.Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels.Forest Ecology and Management,2013,306:234- 242.
    [28] 陈志成,刘晓静,刘畅,万贤崇.锐齿栎幼苗生长、光合作用和非结构性碳对遮阴和模拟光斑的响应.生态学杂志,2017,36(4):935- 943.
    [29] Myers J A,Kitajima K.Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest.Journal of Ecology,2007,95(2):383- 395.
    [30] Valladares F,Niinemets ü.Shade tolerance,a key plant feature of complex nature and consequences.Annual Review of Ecology,Evolution,and Systematics,2008,39:237- 257.
    [31] Schmitz J,Heinrichs L,Scossa F,Fernie A R,Oelze M L,Dietz K J,Rothbart M,Grimm B,Flügge U I,H?usler R E.The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities.Journal of Experimental Botany,2014,65(6):1619- 1636.
    [32] 霍常富,孙海龙,王政权,范志强,赵晓敏.光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响.林业科学,2009,45(7):38- 44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700