用户名: 密码: 验证码:
涠西南凹陷陡坡带流一段上亚段异重流沉积新发现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:.New discovery of hyperpycnal flow deposits in the El_1~x section of the steep slope belt in the Weixinan sag
  • 作者:金杰华 ; 操应长 ; 王健 ; 杨田 ; 刘娟 ; 王心怿 ; 王淑萍
  • 英文作者:JIN Jiehua;CAO Yingchang;WANG Jian;YANG Tian;LIU Juan;WANG Xinyi;WANG Shuping;School of Geosciences,China University of Petroleum (Eastern China);Evaluation and Detection Technology Laboratory of Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;Zhanjiang Technical Department CNOOC;
  • 关键词:异重流沉积 ; 沉积特征 ; 控制因素 ; 陡坡带 ; 流一段下亚段 ; 涠西南凹陷
  • 英文关键词:hyperpycnites;;sedimentary characteristics;;controlling factors;;steep slope;;lower part of the first member of the Liushagang Formation;;Weixinan sag
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国石油大学(华东)地球科学与技术学院;青岛海洋科学与技术国家重点实验室海洋矿产资源评价与探测技术功能实验室;中海石油(中国)有限公司湛江分公司;
  • 出版日期:2019-05-22 15:40
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.138
  • 基金:中国科学院战略型先导科技专项(A类)子课题(XDA14010301);; 国家自然科学基金项目(U1762217);; 国家科技重大专项专题(2017ZX05009001);; 中央高校基本科研业务费专项资金项目(16CX06036A,18CX05027A);; 中国博士后科学基金面上项目(2017M622314)
  • 语种:中文;
  • 页:DXQY201904031
  • 页数:9
  • CN:04
  • ISSN:11-3370/P
  • 分类号:254-262
摘要
以涠西南凹陷北部陡坡带中段流一段下亚段为研究对象,综合利用三维地震、测井、录井、钻井岩心及分析测试等资料,对研究区异重流成因深水扇的沉积特征、控制因素及沉积模式进行了研究。结果表明,断陷盆地陡坡带至湖盆底部可发育洪水型异重流沉积,依次为顺直水道、弯曲水道和朵叶体,其延伸距离约为15km,宽度为50~150m。其中,水道地震反射明显强于周围深水泥岩,其内部沉积以砂岩和含砾砂岩为主;朵叶体沉积主要为细砂岩或粉砂岩,富含陆源植物碎屑,其粒度概率曲线以上拱弧式及宽缓上拱式为主,样品点分布大致平行于C=M基线,指示重力流沉积动力特征。垂向上,单层砂岩一般表现为逆粒序与正粒序成对出现,中部粒度最粗,可见泥质碎屑呈叠瓦状排列,且发育层内微侵蚀面。此外,异重流沉积内部发育块状层理、平行层理、波状交错层理及爬升砂纹层理等沉积构造。"源-汇"系统决定了异重流的沉积特征与展布,万山隆起东部岩浆岩等物源输入是异重流形成的物质基础,强构造运动、陡坡折带、湿润-半湿润气候及低湖水密度是控制异重流发育程度的主要因素。研究区异重流的发现不仅丰富了断陷湖盆陡坡带沉积相类型,也为陡坡带进一步油气勘探提供了理论依据。
        In a case study in the lower part of the first member of the Liushagang Formation(El_1~x)in the middle of the steep slope zone in the Weixinan sag,we examined the sedimentary characteristics,controlling factors and distribution features of deep-water fan formed by hyperpycnal flow through analyzes of 3 D seismic information,well logging and core drilling data and laboratory measurements.The results show that hyperpycnites are distributed from the steep slope to the bottom of lacustrine basin,where hyperpycnal flow developed sequentially straight and meandering channels and lobes which expand 15 km long and 50-100 m wide.The seismic reflections of hyperpycnites are obviously stronger than that of the surrounding deep-water mudstones.Hyperpycnites are mainly composed of fine-grained sandstone,siltstone and small amounts of pebbly sandstone;terrigenous biolastics(plant material)are also common.The grain size accumulation curve is mainly overarching and the sample point distribution is roughly parallel to the baseline of C=M,showing the characteristics of gravity flow deposits.A bed of sandstone is usually composed of paired inverse and normal grading sequences,with the coarsest grain depositing in the middle of the bed.Rip-up mud clasts are typical with imbrication.The intrasequence weak erosional contacts are also obvious.In addition,hyperpycnal flow developed sedimentary structures of massive and parallel bedding,Hummocky crossstratification and climbing sand ripples by bed-and suspended-load transportation.Since sedimentary characteristics and distribution of hyperpycnites are determined by source-to-sink system,magmatic rocks originated from eastern Wanshan uplift provided the material basis of hyperpycnites,while strong tectonic movements,steep slope,wet-half humid climate and relatively low density of water are the main controlling factors for the development of hyperpycnites.Our discovery of hyperpycnal flow deposits in the study area not only enriches our knowledge of sedimentary environment in the steep slope belt in lacustrine basin,but also provides theoretical guidance for further hydrocarbon exploration in steep slope regions.
引文
[1] MIDDLETON G V,HAMPTON M A.Sediment gravity flows:mechanics of flow and deposition[C]∥MIDDLETON G V,BOUMA A H.Turbidites and deep-water sedimentation.Los Angeles,California:SEPM Pacific Section,1973:1-38.
    [2] VALLE G D,GAMBERI F.Erosional sculpting of the Caprera confined deep-sea fan as a result of distal basin-spilling processes(eastern Sardinian margin,Tyrrhenian Sea)[J].Marine Geology,2010,268(1/2/3/4):55-66.
    [3]杨仁超,金之钧,孙东胜,等.鄂尔多斯晚三叠世湖盆异重流沉积新发现[J].沉积学报,2015,33(1):10-20.
    [4]潘树新,刘化清,ZAVALA C,等.大型坳陷湖盆异重流成因的水道-湖底扇系统:以松辽盆地白垩系嫩江组一段为例[J].石油勘探与开发,2017,44(6):860-870.
    [5] MULDER T,MIGEON S,SAVOYE B,et al.Inversely graded turbidite sequences in the deep mediterranean:a record of deposits from flood-generated turbidity currents?[J].Geo-marine Letters,2001,21(2):86-93.
    [6] ALEXANDER J,MULDER T.Experimental quasi-steady density currents[J].Marine Geology,2002,186(3):195-210.
    [7] SHANMUGAM G.New perspectives on deep-water sandstones:implications[J].Petroleum Exploration and Development,2013,40(3):316-324.
    [8] TALLING P J,PAULL C K,PIPER D J.How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve?Direct observations from monitoring of active flows[J].Earth-Science Reviews,2013,125(3):244-287.
    [9]鲜本忠,万锦峰,姜在兴,等.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J].地学前缘,2012,19(1):121-135.
    [10]廖继佳,朱筱敏,邓秀芹,等.鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J].地学前缘,2013,20(2):29-39.
    [11] SHANMUGAM G.High-density turbidity currents:are they sandy debris flows?[J].Journal of Sedimentary Research,1996,66(1):2-10.
    [12]杨田,操应长,王艳忠,等.异重流沉积动力学过程及沉积特征[J].地质论评,2015,61(1):23-33.
    [13]操应长,王思佳,王艳忠,等.滑塌型深水重力流沉积特征及沉积模式:以渤海湾盆地临南洼陷古近系沙三中亚段为例[J].古地理学报,2017,19(3):419-432.
    [14] PIPER D J,NORMARK W R.Processes that initiate turbidity currents and their influence on turbidites:a marine geology perspective[J].Journal of Sedimentary Research,2009,79(6):347-362.
    [15] MUTTI E,BERNOULLI D,LUCCHI F R,et al.Turbidites and turbidity currents from alpine‘flysch’to the exploration of continental margins[J].Sedimentology,2008,56(1):267-318.
    [16] TALLING P J.On the triggers,resulting flow types and frequencies of subaqueous sediment density flows in different settings[J].Marine Geology,2014,352(3):155-182.
    [17]刘江艳,张昌民,侯国伟,等.西湖凹陷中部花港组异重流沉积特征及模式[J].中国海上油气,2018,30(2):17-24.
    [18] STEVENSON C J,PEAKALL J.Effects of topography on lofting gravity flows:implications for the deposition of deep-water massive sands[J].Marine and Petroleum Geology,2010,27(7):1366-1378.
    [19] PATTISON S A J,BRUCE-AINSWORTH R,HOFFMAN T A.Evidence of across-shelf transport of fine-grained sediments:turbidite-filled shelf channels in the Campanian Aberdeen Member,Book Cliffs,Utah,USA[J].Sedimentology,2007,54(5):1033-1064.
    [20] MUTTI E,TINTERRI R,BENEVELLI G,et al.Deltaic,mixed and turbidite sedimentation of ancient foreland basins[J].Marine and Petroleum Geology,2003,20(6):733-755.
    [21] MULDER T,SYVITSKI J P,MIGEON S,et al.Marine hyperpycnal flows:initiation,behavior and related deposits.A review[J].Marine and Petroleum Geology,2003,20(6):861-882.
    [22] PETTER A L,STEEL R J.Hyperpycnal flow variability and slope organization on an Eocene shelf margin,Central Basin,Spitsbergen[J].AAPG Bulletin,2006,90(10):1451-1472.
    [23] PLINK-BJRKLUND P,STEEL R J.Initiation of turbidity currents:outcrop evidence for eocene hyperpycnal flow turbidites[J].Sedimentary Geology,2004,165(1):29-52.
    [24]孙福宁,杨仁超,李冬月.异重流沉积研究进展[J].沉积学报,2016,34(3):452-462.
    [25]谭卓,刘志国,李运振,等.北部湾盆地涠西南凹陷陡坡带砂体成因类型及其演化[J].地质调查与研究,2015,38(1):1-9.
    [26]董桂能.涠西南凹陷流一段扇三角洲沉积特征及其对隐蔽油气藏形成的控制作用[J].中国海上油气,2008,20(5):298-301.
    [27]董桂能,李俊良.北部湾盆地涠西南凹陷流一段非构造油气藏[J].石油勘探与开发,2010,37(5):552-560.
    [28]王健,操应长,李俊良.北部湾盆地涠西南凹陷古近系层序结构与非构造圈闭[J].石油勘探与开发,2012,39(3):304-312.
    [29]方勇,张树林,胡林,等.涠西南凹陷流一段两种岩性圈闭成因模式分析[J].中国海上油气,2013,25(5):16-20.
    [30]裴健翔,董桂能,朱其.北部湾盆地涠西南凹陷流一段强制湖退沉积体的特征及其油气地质意义[J].石油与天然气地质,2016,37(4):520-527.
    [31]张智武,刘志峰.北部湾盆地裂陷期构造及演化特征[J].石油天然气学报(江汉石油学院学报),2013,35(1):6-10.
    [32]刘震,谭卓,蔡东升,等.用断层面正压力法分析北部湾盆地涠西南凹陷断层垂向封闭性及其演化[J].地质科学,2008,43(4):695-711.
    [33]刘化清,洪忠,张晶,等.断陷湖盆重力流水道地震沉积学研究:以歧南地区沙一段为例[J].石油地球物理勘探,2014,49(4):784-794.
    [34] WANG J,CAO Y C,LIU H M,et al.Formation conditions and sedimentary model of over-flooding lake deltas within continental lake basins:an example from the Paleogene in the Jiyang Subbasin,Bohai Bay Basin[J].Acta Geologica Sinica-English Edition,2015,89(1):270-284.
    [35] ZAVALA C,PONCE J J,ARCURI M,et al.Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso Formation(Cretaceous)of West-central Argentina[J].Journal of Sedimentary Research,2006,76(1):41-59.
    [36]朱伟林,江文荣.北部湾盆地涠西南凹陷断裂与油气藏[J].石油学报,1998,18(7):6-10.
    [37]徐建勇,张功成,梁建设,等.北部湾盆地古近纪幕式断陷活动规律及其与油气的关系[J].中国海上油气,2011,23(6):362-368.
    [38]刘恩涛,刘华,李媛,等.北部湾盆地福山凹陷构造转换带对层序及沉积体系的控制[J].中国石油大学学报(自然科学版),2013,37(3):17-29.
    [39]余一欣,周心怀,魏刚,等.渤海湾地区构造变换带及油气意义[J].古地理学报,2008,10(5):555-560.
    [40]鲍志东,赵艳军,祁利祺,等.构造转换带储集体发育的主控因素:以准噶尔盆地腹部侏罗系为例[J].岩石学报,2011,27(3):867-877.
    [41]罗威,谢金有,刘新宇,等.北部湾盆地海中凹陷古近纪古气候研究[J].微体古生物学报,2013,30(3):288-296.
    [42]操应长,宋玲,王健,等.重矿物资料在沉积物物源分析中的应用:以涠西南凹陷古近系流三段下亚段为例[J].沉积学报,2011,29(5):835-841.
    [43] POSAMENTIER H W.Depositional elements associated with a basin floor channel-levee system:case study from the Gulf of Mexico[J].Marine and Petroleum Geology,2003,20(6):677-690.
    [44]杨仁超,何治亮,邱桂强,等.鄂尔多斯盆地南部晚三叠世重力流沉积体系[J].石油勘探与开发,2014,41(6):661-670.
    [45]操应长,徐琦松,王健.沉积盆地“源-汇”系统研究进展[J].地学前缘,2018,25(4):116-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700