用户名: 密码: 验证码:
东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt:insights from Late Triassic plutons
  • 作者:陈国超 ; 裴先治 ; 李瑞保 ; 李佐臣 ; 裴磊 ; 刘成军 ; 陈有炘 ; 王盟 ; 高峰 ; 李小兵
  • 英文作者:CHEN Guochao;PEI Xianzhi;LI Ruibao;LI Zuochen;PEI Lei;LIU Chengjun;CHEN Youxin;WANG Meng;GAO Feng;LI Xiaobing;School of Earth Science and Resources,Chang'an University Key Laboratory of Western China's Mineral Resources and Geological Engineering,Ministry of Education Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits,Ministry of Natural Resources;School of Civil Engineering,Nanyang Institute of Technology;College of Geographical Sciences,Shanxi Normal University;
  • 关键词:岩浆岩 ; 后碰撞 ; 构造演化 ; 东昆仑造山带 ; 晚三叠世
  • 英文关键词:magmatic rock;;post-collision;;tectonic evolution;;East Kunlun Orogenic Belt(EKOB);;Late Triassic
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:长安大学地球科学与资源学院西部矿产资源与地质工程教育部重点实验室自然资源部岩浆作用成矿与找矿重点实验室;南阳理工学院土木工程学院;山西师范大学地理科学学院;
  • 出版日期:2019-01-14 13:46
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.138
  • 基金:国家自然科学基金项目(41472191,41502191,4160229,41872233,41872235,41802234);; 青海省国土资源厅-中国铝业公司公益性区域地质矿产调查基金项目(200801)
  • 语种:中文;
  • 页:DXQY201904026
  • 页数:18
  • CN:04
  • ISSN:11-3370/P
  • 分类号:195-212
摘要
通过对东昆仑造山带晚三叠世岩浆岩的岩石类型、形成时代、岩石地球化学和同位素地球化学资料综合分析,对岩浆岩的岩石组合、分布特征和岩石成因进行研究,探讨东昆仑造山带晚三叠世构造演化的地球动力学背景。东昆仑造山带晚三叠世是古特提斯演化过程中重要的构造转换期,岩浆岩岩石类型多样,主要包括辉长岩、花岗闪长岩、二长花岗岩和正长花岗岩,并且广泛出露具埃达克质特征的岩浆岩和A型花岗岩。晚三叠世岩浆岩的出露规模与俯冲阶段相比,规模较小,一般以小岩体、岩株和岩脉侵入于早期岩体和地层中。东昆仑晚三叠世岩浆岩主体为准铝-弱过铝质高钾钙碱性-钾玄岩系列,轻重稀土元素具有一定分异,富集大离子亲石元素,亏损高场强元素,岩石类型不同时分异程度、富集和亏损程度有一定差异。大部分晚三叠世花岗质岩浆岩的同位素特征与晚二叠世—三叠纪镁铁质岩浆岩近似,部分具有更高的εNd(t)和εHf(t)值。镁铁质岩浆岩、普通花岗岩、埃达克质岩浆岩在东昆仑各个构造带皆有分布,A型花岗岩主要分布在祁漫塔格构造带(东昆北)的阿牙克库木湖—香日德断裂附近。东昆仑晚三叠世镁铁质岩浆岩具有弧岩浆岩特征,为俯冲流体交代的地幔楔部分熔融产物。普通花岗岩和埃达克质岩浆岩多为新生下地壳部分熔融产物,少量埃达克质岩浆岩由于与地幔的交代作用,具有幔源特征。A型花岗岩为残留下地壳部分熔融的产物。部分普通花岗岩、埃达克质岩浆岩和A型花岗岩由于岩浆混合作用,具幔源特征。构造环境研究表明,东昆仑在晚三叠世进入古特提斯演化的后碰撞阶段。巴颜喀拉地块同东昆仑地块的持续碰撞导致地壳加厚,密度增大,使岩石圈重力不稳定发生拆沉作用,引发岩石圈地幔减压熔融,产生大量的镁铁质岩浆岩;镁铁质岩浆底侵不同类型地壳熔融及拆沉地壳部分熔融而形成的岩浆交代地幔,以及岩浆混合和岩浆后期演化,形成了东昆仑造山带晚三叠世丰富多样的岩浆岩。
        We studied in detail the rock assembly,distribution and petrogenesis of Late Triassic plutons in the East Kunlun Orogenic Belt(EKOB)by performing a comprehensive analysis of rock types,intrusion ages,petrogeochemistry and isotopic geochemistry characteristics of the plutons.The Late Triassic is a tectonically pivotal transitional period during the evolution of the Paleo-Tethys oceanic system in EKOB when various magmatic rocks,including gabbro,granodiorite,monzonite and syenite,crystallized extensively while adakitic magmatic rock and A-type granite were extensively exposed.Compared to plutons intruded during subduction stage,the Late Triassic plutons possess smaller scale outcrop,such as small intrusions,stocks and dykes intruding into earlier magmatite and strata.Geochemically,the plutons mainly belong to metaluminous to weakly peraluminous high-K to shoshonite series.They are enriched in light rare earth elements(LREE)and large-ion lithophile elements(LILE),Rb,Th,Ba and Cs,and depleted in heavy rare earth elements(HREE)and high field strength elements(HFSE),Nb,Ta and Ti,with varying degrees of differentiation,enrichment and depletion from rock to rock.Most of the plutons have similar isotopic characteristics to that of Late Permian-Triassic mafic magmatic rocks;furthermore,some rocks have higherεNd(t)andεHf(t)values.Mafic magmatite,ordinary granite and adakitic magmatite are ubiquitous in EKOB.However,A-type granites are mainly developed in the Qimantagh tectonic zone,near the Ayakekumulake-Xiangride fault.The mafic plutons are most likely derived from partial melting of metasomatic mantle wedge with subduction fluid based on their arc magmatite features.Most of the ordinary granites and adakitic magmatites are partial-melting products of juvenile lower crust,except for some mantle-derived adakitic magmatites with mantle magma mixing,as well as some A-type granites from relict of partial-melting of lower crust.All studies indicate that EKOB stepped into the post-collision stage of the Paleo-Tethys oceanic system in the Late Triassic period.Crust thickening and density increasing,triggered by continuous collision between the Bayanhar block and EKOB,led to lithospheric delamination due to gravitational instability,which resulted in lithospheric mantle decompressional melting to yield much of mafic magma.Mafic magma later on intruded into different crust melts and partial-melts of delaminated crust to form metasomatic mantle magma,which,through magmatic mixing and later stage evolution,produced the rich and diverse plutons of the Late Triassic in EKOB.
引文
[1] LIEGEOIS G P.Preface:some words on the post-collisional magmatism[J].Lithos,1998,45:XV-XVII.
    [2] BARBARIN B.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,1999,46(3):605-626.
    [3]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [4] PEARCE J A.Sources and settings of granitic rocks[J].Episodes,1996,19(4):120-125.
    [5] EKLUND O,KONOPELKO D,RUTANEN H,et al.1.8Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield[J].Lithos,1998,45(1):87-108.
    [6]韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,2007,14(3):64-72.
    [7]王涛,王晓霞,郭磊,等.花岗岩与大地构造[J].岩石学报,2017,33(5):1459-1478.
    [8]翟明国.花岗岩:大陆地质研究的突破口以及若干关键科学问题:“岩石学报”花岗岩专辑代序[J].岩石学报,2017,33(3):1369-1380.
    [9]马昌前,熊富浩,张金阳,等.从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响:东昆仑早二叠世—晚三叠世镁铁质岩墙群的证据[J].地质学报,2013,87(增刊):79-81.
    [10]马昌前,熊富浩,尹烁,等.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例[J].岩石学报,2015,31(12):3555-3568.
    [11] XIA R,WANG C M,DENG J,et al.Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt:insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton[J].Jouranl of Asian Earth Sciences,2014,93(1):193-210.
    [12] XIONG F H,MA C Q,ZHANG J Y,et al.Reworking of old continental lithosphere:an important crustal evolution mechanism in orogenic belts,as evidenced by Triassic I-type granitoids in the East Kunlun orogen,Northern Tibetan Plateau[J].Journal of the Geological Society,2014,171(6):847-863.
    [13]陈国超,裴先治,李瑞保,等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘,2016,23(4):226-240.
    [14]陈国超,裴先治,李瑞保,等.东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J].岩石学报,2018,34(3):567-585.
    [15]高永宝,李文渊,李侃,等.东昆仑祁漫塔格早中生代大陆地壳增生过程中的岩浆活动与成矿作用[J].矿床地质,2017,36(2):463-482.
    [16]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.
    [17] HUANG H,NIU Y L,NOWELL G,et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt,northern Tibetan Plateau:implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology,2014,370:1-18.
    [18] DING Q F,JIANG S Y,SUN F Y.Zircon U-Pb geochronology,geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen,NW China:petrogenesis and tectonic implications[J].Lithos,2014,205:266-283.
    [19]罗明非,莫宣学,喻学惠,等.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J].岩石学报,2014,30(11):3229-3241.
    [20]白宜娜,孙丰月,钱烨,等.青海东昆仑尕林格铁多金属矿床辉石闪长岩U-Pb年代学及地球化学特征[J].世界地质,2016,35(1):17-27.
    [21] WANG H,FENG C Y,LI D X,et al.Geology,geochronology and geochemistry of the Saishitang Cu deposit,East Kunlun Mountains,NW China:constraints on ore genesis and tectonic setting[J].Ore Geology Reviews,2016,72:43-59.
    [22]陈国超,裴先治,李瑞保,等.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J].地质学报,2013,87(2):178-196.
    [23]陈国超,裴先治,李瑞保,等.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例[J].中国地质,2013,40(4):1044-1065.
    [24]陈国超,裴先治,李瑞保,等.东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义[J].地质学报,2013,87(10):1525-1541.
    [25] XIA R,WANG C,QING M,et al.Molybdenite Re-Os,zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit,East Kunlun Mountains,Qinghai Province,China[J].Ore Geology Reviews,2015,66:114-131.
    [26] HU Y,NIU Y L,LI J Y,et al.Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt,Northern Tibet Plateau[J].Lithos,2016,245:205-222.
    [27]孔会磊,李金超,栗亚芝,等.青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J].地质科技情报,2016,35(1):8-16.
    [28] DONG Y P,HE D F,SUN S S,et al.Subduction and accretionary tectonics of the East Kunlun Orogen,western segment of the Central China Orogenic System[J].Earth-Science Reviews,2018,186:231-261.
    [29]张明玉,丰成友,王辉,等.东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J].岩石矿物学杂志,2018,37(2):197-210.
    [30] MENG F C,CUI M H,WU X K,et al.Heishan mafic-ultramafic rocks in the Qimantag area of Eastern Kunlun,NW China:remnants of an early Paleozoic incipient island arc[J].Gondwana Research,2015,27(2):745-759.
    [31]陈国超,裴先治,李瑞保,等.东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J].大地构造与成矿学,2017,41(6):1097-1115.
    [32]陈国超,裴先治,李瑞保,等.东昆仑东段加鲁河中基性岩体环石英捕虏晶角闪石和黑云母矿物学特征及其对岩浆混合过程的约束[J].地学前缘,2017,24(6):10-24.
    [33]陈国超,裴先治,李瑞保,等.东昆仑东段香加南山花岗岩基斜长石成分组成与岩浆演化和混合作用[J].地质学报,2017,91(12):2651-2666.
    [34] LI R B,PEI X Z,PEI L,et al.The Early Triassic Andeantype Halagatu granitoids pluton in the East Kunlun Orogen,northern Tibet Plateau:response to the northward subduction of the Paleo-Tethys Ocean[J].Gondwana Research,2018,62:212-226.
    [35]姜春发,杨经绥,冯秉贵.昆仑开合构造[M].北京:地质出版社,1992:58-100.
    [36]姜春发,王宗起,李锦轶.中央造山带开合构造[M].北京:地质出版社,2000:1-154.
    [37] MENG F C,ZHANG J X,CUI M H.Discovery of Early Paleozoic eclogite from the East Kunlun,Western China and its tectonic significance[J].Gondwana Research,2013,23(2):825-836.
    [38]裴先治,胡楠,刘成军,等.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析[J].地质论评,2015,61(2):307-323.
    [39] CHEN G C,PEI X Z,LI R B,et al.Paleo-Tethyan Oceanic Crust Subduction in the Eastern Section of the East Kunlun Orogenic Belt:geochronology and Petrogenesis of the Qushi'ang Granodiorite[J].Acta Geologica Sinica(English Edition),2017,91(2):565-580.
    [40] CHEN G C,PEI X Z,LI R B,et al.Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt[J].Acta Geologica Sinica(English Edition),2017,91(Suppl 1):63.
    [41] CHEN F,JOLIVET M,HALLOT E,et al.Tectono-magmatic rejuvenation of the Qaidam Craton,northern Tibet[J].Gondwana Research,2017,49:248-263.
    [42] YU M,FENG C Y,SANTOSH M,et al.The Qima Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J].Earth-Science Reviews,2017,167:103-123.
    [43]袁万明,莫宣学,张爱奎,等.青海省东昆仑斑岩带新发现[J].地学前缘,2017,24(6):1-9.
    [44]刘战庆,裴先治,李瑞保,等.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报,2011,85(2):185-194.
    [45]王秉璋,罗照华,李怀毅,等.东昆仑祁漫塔格走廊域晚古生代—早中生代侵入岩岩石组合及时空格架[J].中国地质,2009,36(4):769-782.
    [46]罗明非,莫宣学,喻学惠,等.东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义[J].地学前缘,2015,22(5):182-195.
    [47]杨延乾,李碧乐,许庆林,等.东昆仑埃坑德勒斯特二长花岗岩锆石U-Pb定年及地质意义[J].西北地质,2013,46(1):56-62.
    [48]张建新,孟繁聪,万渝生,等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据[J].地质通报,2003,22(6):397-404.
    [49]陈能松,李晓彦,张克信,等.东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示[J].地质科技情报,2006,25(6):1-7.
    [50]李佐臣,裴先治,刘战庆,等.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义[J].地质学报,2013,87(8):1089-1103.
    [51]刘金龙,孙丰月,李良,等.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素[J].地球科学:中国地质大学学报,2015,40(6):965-981.
    [52] ZHANG J Y,YANG Z B,ZHANG H,et al.Controls on the formation of Cu-rich mamas:insights form the Late Triassic post-collisional Saishitang complex in the eastern Kunlun Orogen,western China[J].Lithos,2017,278/279/280/281:400-418.
    [53]丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报,2012,28(2):665-678.
    [54]肖晔,丰成友,刘建楠,等.青海肯德可克铁多金属矿区年代学及硫同位素特征[J].矿床地质,2013,32(1):177-186.
    [55] LIU B,MA C Q,HUANG J,et al.Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun Orogenic Belt,northern Tibetan Plateau[J].Lithos,2017,284/285:766-778.
    [56] YUAN C,SUN M,XIAO W J,et al.Garnet-bearing tonalitic porphyry from East Kunlun,Northeast Tibetan Plateau:implications for adakite and magmas from the MASH Zone[J].International Jounal of Earth Sciences,2009,98(6):1489-1510.
    [57] LI B L,ZHI Y B,ZHANG L,et al.U-Pb dating,geochemistry,and Sr-Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu-(Mo)deposit in the Eastern Kunlun metallogenic belt,Qinghai Province,China[J].Ore Geology Reviews,2015,67:1-10.
    [58]钱兵,高永宝,李侃,等.新疆东昆仑于沟子地区与铁—稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J].岩石学报,2015,31(9):2508-2520.
    [59]丁烁,黄慧,牛耀龄,等.东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J].岩石学报,2011,27(12):3603-3614.
    [60]奥琮,孙丰月,李碧乐,等.东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义[J].大地构造与成矿学,2015,39(6):1176-1184.
    [61] SHAO F L,NIU Y L,LIU Y,et al.Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt,northern Tibetan Plateau and their tectonic implications[J].Lithos,2017,282/283:33-44.
    [62]曹建辉,袁万明,郝娜娜,等.东昆仑沟里地区花岗岩年代学、岩石地球化学及其地球动力学意义[J].地质科技情报,2015,34(2):42-51.
    [63]瞿泓滢,丰成友,裴荣富,等.青海祁漫塔格虎头崖多金属矿区岩体热年代学研究[J].地质学报,2015,89(3):498-509.
    [64]刘建楠,丰成友,何书跃,等.青海野马泉铁锌矿床二长花岗岩锆石U-Pb和金云母Ar-Ar测年及地质意义[J].大地构造与成矿学,2017,41(6):1158-1170.
    [65]朱云海,朱耀生,林启祥,等.东昆仑造山带海德乌拉一带早侏罗世火山岩特征及其构造意义[J].地球科学:中国地质大学学报,2003,28(6):653-659.
    [66]吴祥珂,孟繁聪,许虹,等.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J].岩石学报,2011,27(11):3380-3394.
    [67]奚仁刚,校培喜,伍跃中,等.东昆仑肯德可克铁矿区二长花岗岩组成、年龄及地质意义[J].西北地质,2010,43(4):195-202.
    [68]李侃,高永宝,钱兵,等.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质,2015,42(3):630-645.
    [69]张爱奎,莫宣学,袁万明,等.东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J].矿物学报,2016,36(2):157-173.
    [70] YIN S,MA C Q,XU J N.Geochronology,geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield,East Kunlun Orogenic Belt,northern Qinghai-Tibet Plateau:implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration[J].Lithos,2017,294/295:339-355.
    [71]高永宝,李文渊,钱兵,等.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J].岩石学报,2014,30(6):1647-1665.
    [72]高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版),2012,48(2):36-47.
    [73]周建厚,丰成友,沈灯亮,等.新疆祁漫塔格维宝矿区西北部花岗闪长岩年代学、地球化学及其构造意义[J].地质学报,2015,89(3):473-486.
    [74]许庆林,孙丰月,李碧乐,等.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J].大地构造与成矿学,2014,38(2):421-433.
    [75]张炜,周汉文,朱云海,等.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据[J].地球科学:中国地质大学学报,2016,41(8):1334-1348.
    [76]孔会磊,李金超,黄军,等.东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J].中国地质,2015,42(3):521-532.
    [77]李积清,陈静,史青瑞,等.东昆仑卡尔却卡矿区似斑状二长花岗岩成因:锆石U-Pb年龄及Sr-Nd同位素制约[J].矿物岩石,2016,36(3):87-95.
    [78]岳维好,周家喜,高建国,等.青海都兰县阿斯哈金矿区花岗斑岩岩石地球化学、锆石U-Pb年代学与Hf同位素研究[J].大地构造与成矿学,2017,41(4):776-789.
    [79]吴中楠,计文化,何世平,等.青海省兴海县日龙沟花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报,2015,34(9):1677-1688.
    [80]陈丹玲,刘良,车自成,等.祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J].地球化学,2001,30(6):540-546.
    [81]杨涛,李智明,张乐,等.东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J].高校地质学报,2017,23(3):452-464.
    [82]何书跃,李东生,李良林,等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学,2009,33(2):236-242.
    [83]李金超,孔会磊,栗亚芝,等.青海东昆仑瑙木浑金矿蚀变绢云母Ar-Ar年龄、石英闪长岩锆石U-Pb年龄和岩石地球化学特征[J].地质学报,2017,91(5):979-991.
    [84]李世金,孙丰月,丰成友,等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报,2008,82(7):949-955.
    [85]刘成东,周肃,莫宣学,等.东昆仑造山带后碰撞花岗岩岩石地球化学和40 Ar-39 Ar同位素年代学约束[J].华东地质学院学报,2003,26(4):301-305.
    [86]刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2006,22(10):2457-2463.
    [87]鲁海峰,杨延乾,何皎,等.东昆仑哈陇休玛钼(钨)矿床花岗闪长斑岩锆石U-Pb及辉钼矿Re-Os同位素定年及其地质意义[J].矿物岩石,2017,37(2):33-39.
    [88]潘晓萍,李荣社,于浦生,等.祁漫塔格地区肯德可克铁钴多金属矿围岩时代及其意义[J].岩石矿物学杂志,2013,32(1):53-62.
    [89]王富春,陈静,谢志勇,等.东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年[J].中国地质,2013,40(4):1209-1217.
    [90]王辉,丰成友,李大新,等.青海赛什塘铜矿床辉钼矿Re-Os年代学及硫同位素地球化学研究[J].地质学报,2015,89(3):487-497.
    [91]佘宏全,张德全,景向阳,等.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质,2007,34(2):306-314.
    [92]肖晔,丰成友,李大新,等.东青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J].地质学报,2014,88(5):895-902.
    [93] WILSON M.Igneous petrogenesis[M].London:Springer,1989:295-323.
    [94] ROLLINSON H R.A terrane interpretation of the Archaean Limpopo Belt[J].Geological Magazine,1993,130(6):755-765.
    [95] MANIAR P D,PICCOLI P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
    [96]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297.
    [97] BOYNTON W V.Geochemistry of the rare earth elements:meteorite studies[M]∥HENDERSON P.Rare earth element geochemistry.Amsterdam:Elservier,1984:63-114.
    [98] SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]∥SAUNDERS A D,NORRY M J.Magmatism in ocean basins.Geological Society of London,Special Publication,1989,42:313-345.
    [99]郭安林,张国伟,孙延贵,等.青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义[J].岩石学报,2007,23(4):747-754.
    [100]余能,金巍,葛文春,等.东昆仑金水口过铝花岗岩的地球化学研究[J].世界地质,2005,24(2):123-128.
    [101] TAYLOR S R,MCLENNAN S M.The continental crust:its composition and evolution[M].Oxford:Blackwell,1985:1-132.
    [102] RAPP R P,WATSON E B.Dehydration melting of metabasalt at 8-32kbar:implications for continental growth and crust-mantle recycling[J].Journal of Petrology,1995,36(4):891-931.
    [103] MCCULLOCH M T,GAMBLE J A.Geochemical and geodynamical constraints on subduction zone magmatism[J].Earth and Planetary Science Letters,1991,102(3/4):358-374.
    [104] LUHR J F,HALDAR D.Barren Island Volcano(NE Indian Ocean):island-arc high-alumina basalts produced by troctolite contamination[J].Journal of Volcanology and Geothermal Research,2006,149(3/4):177-212.
    [105]熊富浩,马昌前,张金阳,等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J].岩石学报,2011,27(11):3350-3364.
    [106] YU M,FENG C Y,ZHAO Y M,et al.Genesis of postcollisional calc-alkaline and alkaline granitoids in Qiman Tagh,East Kunlun,China[J].Lithos,2015,239:45-59.
    [107]蔡宏明,张宏飞,徐旺春,等.松潘带印支期岩石圈拆沉作用新证据:来自火山岩岩石成因的研究[J].中国科学:地球科学,2010,40(11):1518-1532.
    [108]袁静,肖龙,万传辉,等.松潘-甘孜南部放马坪-三岩龙花岗岩的成因及其构造意义[J].地质学报,2011,85(2):195-206.
    [109] DEFANT M J,DRUMMOND M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,1990,347(6294):662-665.
    [110] BEA F,PEREIRA M D,STROH A.Mineral/leucosome trace-element partitioning in a peraluminous migmatite(a laser ablation-ICP-MS study)[J].Chemical Geology,1994,117(1/2/3/4):291-312.
    [111]熊小林,ADAM J,GREEN T H,等.变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件[J].中国科学D辑:地球科学,2005(9):41-50.
    [112] WANG Q,XU J F,JIAN P,et al.Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing,South China:implications for the genesis of porphyry copper mineralization[J].Journal of Petrology,2006,47(1):119-144.
    [113] FLLEY S,TIEPOLO M,VANNUCCI R.Growth of early continental crust controlled by melting of amphibolite in subduction zones[J].Nature,2002,417(6891):837-840.
    [114] WHALEN J B,CURRIE K L,CHAPPELL B W.A-type granites:geochemical characteristics discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95(4):407-419.
    [115] COLLINS W J,BEAMS S D,WHITE A J R,et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80(2):189-200.
    [116] EBY G N.Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J].Geology,1992,20(7):641-644.
    [117]李晓勇,郭锋,王岳军.造山后构造岩浆作用研究评述[J].高校地质学报,2002,8(1):68-78.
    [118] BONIN B.Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting,mantle and crust,sources?A review[J].Lithos,2004,78(1/2):1-24.
    [119] BIRD P.Initiation of intracontinental subduction in the Himalayia[J].Journal of Geophysical Research:Solid Earth,1978,83(B10):4975-4987.
    [120] NELSON K D.Are crustal thickness variation in old mountain belts like the Appalachians a consequence of lithospheric delamination?[J].Geology,1992,20(6):498-502.
    [121] BONIN B.A-type granites and related rocks:evolution of a concept,problems and prospects[J].Lithos,2007,97(1/2):1-29.
    [122] CASTILLO.An overview of adakite petrogenesis[J].Chinese Science Bulletin,2006,51(3):257-268.
    [123] PEARCE J A,HARRIS N B W,TINDIE A G.Trace element discrimination diagrams for the tectonic interpretations of granitic rocks[J].Journal of Petrology,1984,25(4):956-983.
    [124] PEARCE J A,PEATE D W.Tectonic implications of the composition of volcanic are magmas[J].Annual Review Earth and Planetary Science Letters,1995,23(1):251-285.
    [125]李瑞保,裴先治,李佐臣,等.东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J].地学前缘,2012,19(5):244-254.
    [126]陈国超,裴先治,李瑞保,等.东昆仑造山带东段阿拉克湖地区侏罗系羊曲组地质特征及其构造意义[J].西北地质,2017,50(3):113-125.
    [127]陈国超.东昆仑造山带(东段)晚古生代—早中生代花岗质岩石特征、成因及地质意义[D].长安大学,2014:1-221.
    [128] DAVIES J H,VON BLANCKENBURG F.Slab breakoff:a model of litheosphere detachment and its test in the magmatism and deformation of collisional orogens[J].Earth and Planetary Science Letters,1995,129(1/2/3/4):85-102.
    [129] REY P,VANDERHAEGHE O,TEYSSIER C.Gravitational collapse of the continental crust:definitions,regimes and modes[J].Tectonophysics,2001,342(3):435-449.
    [130]张旗,金惟俊,王元龙,等.大陆下地壳拆沉模式初探[J].岩石学报,2006,22(2):265-276.
    [131] VON BLANCKENBURG F,DAVIES J H.Slab breakoff:a model for syncollisional magmatism and tectonics in the Alps[J].Tectonophysics,1995,14(1):120-131.
    [132] ATHERTON M P,GHANI A A.Slab breakoff:a model for Caledonian,Late Granite syn-collisional magmatism in the orthotectonic(metamorphic)zone of Scotland and Donegal,Ireland[J].Lithos,2002,62(3/4):65-85.
    [133] XIONG F H,MA C Q,JIANG H A,et al.Petrogenetic and tectonic significance of Permian calc-alkaline lamprophyres,East Kunlun Orogenic Belt,northern Qinghai-Tibet Plateau[J].International Geology Review,2013,55(14):1817-1834.
    [134]刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].北京:地质出版社,2008:1-142.
    [135] KAPP P,TAYLOR M,STOCKLI D,et al.Development of active low-angle normal fault systems during orogenic collapse:insight form Tibet[J].Geology,2008,36(1):7-10.
    [136] CHIARADIA M,MUNTENER O,BEATE B,et al.Adakite-like volcanism of Ecuador:lower crust magmatic evolution and recycling[J].Contributions to Mineralogy and Petrology,2009,158(5):563-588.
    [137] GAO S,ZHANG J F,XU W L,et al.Delamination and destruction of the North China Craton[J].Chinese Science Bulletin,2009,54(19):3367-3378.
    [138]许志琴,姜枚,杨经绥,等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉[J].地学前缘,2004,11(4):329-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700