用户名: 密码: 验证码:
藏南松多地区阿扎朗岩体LA-ICP-MS锆石U-Pb年龄和地球化学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Azhalang Intrusion in Sumdo, Southern Tibet
  • 作者:高忠维 ; 解超明 ; 任云生 ; 刘金恒 ; 李麟瀚 ; 郝宇杰
  • 英文作者:Gao Zhongwei;Xie Chaoming;Ren Yunsheng;Liu Jinheng;Li Linhan;Hao Yujie;College of Earth Sciences,Jilin University;Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources;
  • 关键词:青藏高原 ; 新生代 ; 埃达克质岩 ; 地球化学
  • 英文关键词:Tibetan Plateau;;Cenozoic;;adakite;;geochemistry
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:吉林大学地球科学学院;东北亚矿产资源评价自然资源部重点实验室;
  • 出版日期:2019-01-15 10:16
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金项目(No.41872231);; 中国地质调查局项目(No.DD20160026)
  • 语种:中文;
  • 页:DQKX201907012
  • 页数:15
  • CN:07
  • ISSN:42-1874/P
  • 分类号:178-192
摘要
阿扎朗岩体位于冈底斯岩浆弧中东部的松多地区.岩体的锆石U-Pb定年和全岩地球化学分析结果表明,阿扎朗岩体岩性为石英二长斑岩,形成时代为中新世(17.9±0.2 Ma),地球化学上表现高Sr(1 052×10~(-6)~1 150×10~(-6))、低Y(8.51×10~(-6)~9.04×10~(-6))和Yb(0.85×10~(-6)~0.94×10~(-6)),高的Sr/Y(118~128)和La/Yb(30.9~40.8)比值,无明显的Eu异常,同时具有较高的K_2O(3.17%~3.84%)含量和较低的Cr(6.46×10~(-6)~7.78×10~(-6))和Ni(5.41×10~(-6)~7.45×10~(-6))含量,较高的Rb/Sr比值,较高的Mg~#值(43.8~49.8),大离子亲石元素的含量,如Rb、Ba、Th和U明显比LREE高.这些地球化学特征表明其岩石成因可能为增厚的下地壳部分熔融形成,形成于印度-欧亚大陆碰撞造山的后碰撞构造背景下,可能有一定的幔源物质参与.该研究为揭示冈底斯成矿带中新世埃达克岩的成因及成矿地质背景提供重要的制约.
        The Azhalang pluton is located in the Sumdo area in the east-central part of the Gangdise magmatic arc.Zircon U-Pb dating and geochemical analysis of the whole rock indicate that the Azhalang intrusion is quartz monzonite porphyry and the formation period is Miocene(17.9±0.2 Ma).Geochemical characteristics show high Sr(1 052×10~(-6)-1 150×10~(-6)),low Y(8.51×10~(-6)-9.04×10~(-6))and Yb(0.85×10~(-6)-0.94×10~(-6)),high Sr/Y(118-128)and La/Yb(30.9-40.8)ratios,no obvious Eu anomalies,high K_2O(3.17%-3.84%)content,low Cr(6.46×10~(-6)-7.78×10~(-6))and Ni(5.41×10~(-6)-7.45×10~(-6))content,high Mg~#value(43.8-49.8),high Rb/Sr ratio,large ion lithophile element content,such as Rb,Rb,Rb.Ba,Th and U were significantly higher than LREE.These geochemical characteristics indicate that the petrogenesis of the rocks may be formed by partial melting of the thicker lower crust and formed in the post-collisional tectonic setting of the India-Eurasia collision orogeny,and some mantle-derived materials may be involved.This study provides important constraints for revealing the genesis and metallogenic geological setting of the Miocene adakite in the Gangdise metallogenic belt.
引文
Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses that do not Report204Pb.Chemical Geology,192(1-2):59-79.https://doi.org/10.1016/s0009-2541(02)00195-x
    Atherton,M.P.,Petford,N.,1993.Generation of SodiumRich Magmas from Newly Underplated Basaltic Crust.Nature,362(6416):144-146.https://doi.org/10.1038/362144a0
    Batchelor,R.A.,Bowden,P.,1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology,48(1-4):43-55.https://doi.org/10.1016/0009-2541(85)90034-8
    Castillo,P.R.,Janney,P.E.,Solidum,R.U.,1999.Petrology and Geochemistry of Camiguin Island,Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting.Contributions to Mineralogy and Petrology,134(1):33-51.https://doi.org/10.1007/s004100050467
    Chen,R.,Liu,Y.L.,Guo,L.S.,et al.,2014.Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit,Tibet.Acta Geologica Sinica(English Edition),88(3):780-800.https://doi.org/10.1111/1755-6724.12238
    Chung,S.L.,Chu,M.F.,Ji,J.Q.,et al.,2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites.Tectonophysics,477(1-2):36-48.https://doi.org/10.1016/j.tecto.2009.08.008
    Drummond,M.S.,Defant,M.J.,1990.A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting:Archean to Modern Comparisons.Journal of Geophysical Research,95(B13):21503.https://doi.org/10.1029/jb095ib13p21503
    Drummond,M.S.,Defant,M.J.,Kepezhinskas,P.K.,1996.Petrogenesis of Slab-Derived Trondhjemite-TonaliteDacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences,87(1-2):205-215.https://doi.org/10.1017/s0263593300006611
    Gao,Y.F.,Yang,Z.S.,Santosh,M.,et al.,2010.Adakitic Rocks from Slab Melt-Modified Mantle Sources in the Continental Collision Zone of Southern Tibet.Lithos,119(3-4):651-663.https://doi.org/10.1016/j.lithos.2010.08.018
    Hou,Z.Q.,Gao,Y.F.,Meng,X.J.,et al.,2004.Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen.Acta Petrologica Sinica,20(2):239-248(in Chinese with English abstract).
    Hou,Z.Q.,Zhao,Z.D.,Gao,Y.F.,et al.,2006.Tearing and Dischronal Subduction of the Indian Continental Slab:Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet.Acta Petrologica Sinica,22(4):761-774(in Chinese with English abstract).
    Hu,Y.B.,2015.Petrogenesis and Metallogenetic Implications of Aadakites in the Gangdese Porphyry Copper Belt(Dissertation).Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou(in Chinese with English abstract).
    Huang,Y.,Ding,J.,Li,G.M.,et al.,2015.U-Pb Dating,Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance.Acta Geologica Sinica,89(1):99-108(in Chinese with English abstract).
    Jiang,S.H.,Nie,F.J.,Hu,P.,et al.,2006.40Ar-39Ar Age and Geochemical Features of the Mayum Adakitic Porphyry in Tibet.Acta Petrologica Sinica,22(3):603-611(in Chinese with English abstract).
    Kadioglu,Y.K.,Dilek,Y.,2010.Structure and Geochemistry of the Adakitic Horoz Granitoid,Bolkar Mountains,South-Central Turkey,and Its Tectonomagmatic Evolution.International Geology Review,52(4-6):505-535.https://doi.org/10.1080/09507110902954847
    Leng,Q.F.,Tang,J.X.,Zheng,W.B.,et al.,2016.Geochronology,Petrogeochemistry and Petrogenesis of OreBearing Rock Massif in Dabu Mining Area,Tibet.Earth Science,41(6):999-1015(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.083
    Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2011.Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt,Southern Tibet:Melting of Thickened Juvenile Arc Lower Crust.Lithos,126(3-4):265-277.https://doi.org/10.1016/j.lithos.2011.07.018
    Li,S.J.,Wei,Q.R.,Ci,Q.,et al.,2018.Geochronology,Petrogeochemistry and Petrogenesis of Ore-Bearing Rock Massif in Dabu Mining Area,Tibet.Earth Science,43(9):3218-3233(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.231
    Lin,W.,Liang,H.Y.,Zhang,Y.Q.,et al.,2004.Petrochemistry and SHRIMP U-Pb Zircon Age of the Chongjiang Ore-Bearing Porphyry in the Gangdese Porphyry Copper Belt.Geochimica,33(6):585-592(in Chinese with English abstract).
    Long,X.P.,Wilde,S.A.,Wang,Q.,et al.,2015.Partial Melting of Thickened Continental Crust in Central Tibet:Evidence from Geochemistry and Geochronology of Eocene Adakitic Rhyolites in the Northern Qiangtang Terrane.Earth and Planetary Science Letters,414:30-44.https://doi.org/10.1016/j.epsl.2015.01.007
    Lu,Y.J.,Hou,Z.Q.,Yang,Z.M.,et al.,2017.Porphyry Cu Fertility in the Lhasa Terrane,Southern Tibet:Insights from Terrane-Scale Whole-Rock Geochemistry and Zircon Trace Element and Hf-O Isotopes.SEG2017:Ore Deposits of Asia:China and Beyond,Beijing.
    Ma,L.,Wang,Q.,Wyman,D.A.,et al.,2013.Late Cretaceous(100-89 Ma)Magnesian Charnockites with Adakitic Affinities in the Milin Area,Eastern Gangdese:Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet.Lithos,175-176:315-332.https://doi.org/10.1016/j.lithos.2013.04.006
    Martin,H.,1999.Adakitic Magmas:Modern Analogues of Archaean Granitoids.Lithos,46(3):411-429.https://doi.org/10.1016/s0024-4937(98)00076-0
    Meng,Y.K.,Ma,S.W.,Xu,Z.Q.,et al.,2018.Geochronology,Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt.Earth Science,43(4):1142-1163(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.713
    Middlemost,E.A.K.,1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews,37(3-4):215-224.https://doi.org/10.1016/0012-8252(94)90029-9
    Pearce,J.A.,Harris,N.B.W.,Tindle,A.G.,1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology,25(4):956-983.https://doi.org/10.1093/petrology/25.4.956
    Peccerillo,A.,Taylor,S.R.,1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81.https://doi.org/10.1007/bf00384745
    Qin,K.Z.,Li,G.M.,Zhao,J.X.,2008.Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit,the First Single Mo Deposit in Tibet and Its Significance.Geology in China,35(6):1101-1112(in Chinese with English abstract).
    Qu,X.M.,Hou,Z.Q.,Huang,W.,2001.Is Gangdese Porphyry Copper Belt the Second“Yulong”Copper Belt?.Mineral Deposits,20(4):355-366(in Chinese with English abstract).
    Qu,X.M.,Hou,Z.Q.,Li,Y.,2004.Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt,Southern Tibetan Plateau.Lithos,74(3-4):131-148.https://doi.org/10.1016/s0024-4937(04)00027-1
    Qu,X.M.,Jiang,J.H.,Xin,H.B.,et al.,2010.A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen,Tibet:Why does One Group Contain Copper Mineralization and the Other not?.Mineral Deposits,29(3):381-394(in Chinese with English abstract).
    Rapp,R.P.,Shimizu,N.,Norman,M.D.,et al.,1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology,160(4):335-356.https://doi.org/10.1016/S0009-2541(99)00106-0
    Rapp,R.P.,Watson,E.B.,1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology,36(4):891-931.https://doi.org/10.1093/petrology/36.4.891
    Stern,C.R.,Kilian,R.,1996.Role of the Subducted Slab,Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology,123(3):263-281.https://doi.org/10.1007/s004100050155
    Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang,G.J.,Wang,Q.,Wyman,D.A.,et al.,2010.Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt:Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region,Northern Xinjiang(West China).Chemical Geology,277(3-4):281-300.https://doi.org/10.1016/j.chemgeo.2010.08.012
    Wang,B.D.,Xu,J.F.,Chen,J.L.,et al.,2010.Petrogenesis and Geochronology of the Ore-Beating Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metalloganic Belt.Acta Petrologica Sinica,26(6):1820-1832(in Chinese with English abstract).
    Wang,L.L.,Mo,X.X.,Li,B.,et al.,2006.Geochronology and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu(Mo)Ore Deposit,Tibet.Acta Petrologica Sinica,22(4):1001-1008(in Chinese with English abstract).
    Wang,Q.,Xu,J.F.,Jian,P.,et al.,2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting,Dexing,South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology,47(1):119-144.https://doi.org/10.1093/petrology/egi070
    Wei,Y.Q.,Zhao,Z.D.,Niu,Y.L.,et al.,2017.Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet:Initiation of Back-Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane.Lithos,278-281:477-490.https://doi.org/10.1016/j.lithos.2017.02.013
    Whalen,J.B.,1985.Geochemistry of an Island-Arc Plutonic Suite:The Uasilau-Yau Yau Intrusive Complex,New Britain,P.N.G.Journal of Petrology,26(3):603-632.https://doi.org/10.1093/petrology/26.3.603
    Wu,H.,Li,C.,Hu,P.Y.,et al.,2015.Early Cretaceous(100-105 Ma)Adakitic Magmatism in the Dachagou Area,Northern Lhasa Terrane,Tibet:Implications for the Bangong-Nujiang Ocean Subduction and Slab Break-Off.International Geology Review,57(9-10):1172-1188.https://doi.org/10.1080/00206814.2014.886152
    Xia,B.B.,Xia,B.,Wang,B.D.,et al.,2007.Ore-Bearing Adakitic Porphyry in the Middle of Gangdese:Thickened Lower Crustal Melting and the Genesis of Porphyry CuMo Deposit.Geological Science and Technology Intelligence,26(4):19-26(in Chinese with English abstract).
    Xu,J.,Zheng,Y.Y.,Sun,X.,et al.,2016.Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt,Southern Tibet.Journal of Asian Earth Sciences,120:100-116.https://doi.org/10.1016/j.jseaes.2016.01.026
    Xu,W.C.,Zhang,H.F.,Guo,L.,et al.,2010.Miocene High Sr/Y Magmatism,South Tibet:Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication.Lithos,114(3-4):293-306.https://doi.org/10.1016/j.lithos.2009.09.005
    Yang,Z.,Jiang,H.,Yang,M.G.,et al.,2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science,42(3):339-356(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.026
    Yogodzinski,G.M.,Volynets,O.N.,Koloskov,A.V.,et al.,1994.Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano,far Western Aleutians.Journal of Petrology,35(1):163-204.https://doi.org/10.1093/petrology/35.1.163
    Yu,H.,2011.Mineral Geochemical Characteristics and Genetic Mechanism of Olivine Rocks in Shangnan,Shanxi(Dissertation).China University of Geosciences,Beijing,22-25(in Chinese with English abstract).
    Zhang,Z.M.,Zhao,G.C.,Santosh,M.,et al.,2010.Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith,Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?.Gondwana Research,17(4):615-631.https://doi.org/10.1016/j.gr.2009.10.007
    Zheng,Y.Y.,Sun,X.,Gao,S.B.,et al.,2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit,Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences,79,B42-B57.https://doi.org/10.1016/j.jseaes.2013.03.029
    Zheng,Y.Y.,Sun,X.,Zheng,H.T.,et al.,2012.Magma Evolution of Small Intrusion and Mineralization in Gangdese,Tibet.Northwestern Geology,45(4):165-174(in Chinese with English abstract).
    Zhu,D.C.,Zhao,Z.D.,Pan,G.T.,et al.,2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt,Southern Tibet:Products of Slab Melting and Subsequent Melt-peridotite Interaction?.Journal of Asian Earth Sciences,34(3):298-309.https://doi.org/10.1016/j.jseaes.2008.05.003
    侯增谦,高永丰,孟祥金,等,2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248.
    侯增谦,赵志丹,高永丰,等,2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报,22(4):761-774.
    胡永斌,2015.冈底斯斑岩铜矿带埃达克岩成因及成矿启示(博士学位论文).广州:中国科学院广州地球化学研究所.
    黄勇,丁俊,李光明,等,2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报,89(1):99-108.
    江思宏,聂凤军,胡朋,等,2006.西藏马莜木埃达克质斑岩的40Ar-39Ar年龄与地球化学特征.岩石学报,22(3),603-611.
    冷秋锋,唐菊兴,郑文宝,等,2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学,41(6):999-1015.
    李世杰,魏启荣,次琼,等,2018.西藏达布矿区含矿岩体的时代、岩石地球化学特征及岩石成因.地球科学,43(9):3218-3233.
    林武,梁华英,张玉泉,等,2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学,33(6):585-592.
    孟元库,马士委,许志琴,等,2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学,43(4):1142-1163.
    秦克章,李光明,赵俊兴,等,2008.西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质,35(6):1101-1112.
    曲晓明,侯增谦,黄卫,2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?.矿床地质,20(4):355-366.
    曲晓明,江军华,辛洪波,等,2010.西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?.矿床地质,29(3):381-394.
    王保弟,许继峰,陈建林,等,2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报,26(6):1820-1832.
    王亮亮,莫宣学,李冰,等,2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,22(4):1001-1008.
    夏抱本,夏斌,王保弟,等,2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因.地质科技情报,26(4):19-26.
    杨震,姜华,杨明国,等,2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学,42(3):339-356.
    于红,2011.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪(硕士学位论文).北京:中国地质大学,22-25.
    郑有业,孙祥,郑海涛,等,2012.西藏冈底斯小斑岩体演化与成矿.西北地质,45(4):165-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700