用户名: 密码: 验证码:
基于土层常规参数的剪切波速液化概率计算公式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Liquefaction probability formula of shear wave velocity based on conventional parameters of soil layer
  • 作者:杨洋 ; 孙锐 ; 陈卓 ; 袁晓铭
  • 英文作者:YANG Yang;SUN Rui;CHEN Zhuo-shi;YUAN Xiao-ming;Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Institute of Engineering Mechanics,China Earthquake Administration;
  • 关键词:液化概率 ; 概率公式 ; 土层常规参数 ; 剪切波速
  • 英文关键词:liquefaction probability;;probabilistic equation;;conventional soils parameters;;shear wave velocity
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:中国地震局工程力学研究所地震工程与工程振动重点实验室;
  • 出版日期:2019-01-28 11:30
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.304
  • 基金:中国地震局工程力学研究所基本科研业务费专项资助项目(No.2017B09);; 黑龙江省级资助项目(No.GX16C006);; 国家重点研发计划(No.2016YFE0105500)~~
  • 语种:中文;
  • 页:YTLX201907030
  • 页数:10
  • CN:07
  • ISSN:42-1199/O3
  • 分类号:292-301
摘要
分析国际上现有液化场地剪切波速473组数据进行参数特征后,以此为基础,采用分区方法,利用成熟的Logistic模型,提出了以地表峰值加速度、剪切波速、地下水位、可液化层埋深等4个参数表达的土体液化概率计算公式和不同概率下液化临界值计算公式,研究了不同概率水平下公式的适用性,并与现有主要方法进行比较。研究表明:地震动强度为液化判别首要影响参数,液化层与非液化层剪切波速区分度不显著,采用以往一个公式构造液化判别公式的方式难以要达到基本要求;现有Andrus公式和石兆吉公式会将很多明显为非液化的场地误判为液化场地,违背了现有认识,达到了不可接受的程度,需要改进。文中公式取50%概率时液化点和非液化点回判成功率符合对等原则,不同烈度下成功率均在70%左右;总体看,公式表现良好,可为中国工程建设提供一个合理、可操作性强的剪切波速液化概率判别方法。
        In this study, the parameter characteristics of the database including 473 shear wave velocity test results from all over the world were analyzed. After that, the Logistic model was selected to build a new formula to evaluate the probability of liquefaction, considering four conventional parameters: PGA, shear wave velocity, water table and the depth of liquefiable layer. At last, the applicability of the formula under different probabilistic levels was studied and compared with the existing methods. This study shows that the ground vibration intensity is the primary parameter to influence liquefaction estimation. The shear wave velocity of liquefaction layer does not differentiate from the shear wave velocity of the non-liquefaction layer, so it is difficult to meet the basic requirements by using a semplice formula. The methods developed by Andrus and Shi Zhaoji misjudge many obvious non-liquefied points. Those misjudgments breach the existing knowledge and need improvements. The formula developed by this paper conforms to equal distribution of liquefaction points and non-liquefaction points when P_L=50%, and the accuracy can reach about 70% in different intensity levels. In summary, this formula provides a reasonable and easy-to-use shear wave velocity liquefaction evaluation method.
引文
[1]汪闻韶.土的液化机理[J].水利学报,1981(5):24-36.WANG Wen-shao.Mechanism of soil liquefaction[J].Journal of Hydraulic Engineering,1981(5):24-36.
    [2]陈龙伟,袁晓铭,孙锐.2011年新西兰Mw6.3地震液化及岩土震害述评[J].世界地震工程,2013,29(3):1-9.CHEN Long-wei,YUAN Xiao-ming,SUN Rui.Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J].World Earthquake Engineering,2013,29(3):1-9.
    [3]潘毅,张弛,高宪,等.台湾美浓6.7级地震框架结构震害调查与分析[J].土木工程学报,2016,49(增刊1):13-18.PAN Yi,ZHANG Chi,GAO Xian,et al.Earthquake damage investigation and analysis of the RC frame structures in Taiwan Meinung Ms 6.7 earthquake[J].China Civil Engineering Journal,2016,49(Suppl.1):13-18.
    [4]付海清,袁晓铭,王淼.基于现场液化试验的饱和砂土孔压增量计算模型[J].岩土力学,2018,39(5):1611-1618.FU Hai-qing,YUAN Xiao-ming,WANG Miao.An incremental model of pore pressure for saturated sand based on in-situ liquefaction test[J].Rock and Soil Mechanics,2018,39(5):1611-1618.
    [5]董林,王兰民,夏坤,等.基于台湾集集地震数据的CPT与SPT液化判别方法比较[J].岩土力学,2017,38(12):3643-3648.DONG Lin,WANG Lan-min,XIA Kun,et al.Comparison of CPT-based and SPT-based liquefaction discrimination methods by Taiwan Chi-Chi earthquake data[J].Rock and Soil Mechanics,2017,38(12):3643-3648.
    [6]中华人民共和国国家质量监督检验检疫总局.GB50021-2001(2009)岩土工程勘察规范[S].北京:中国建筑工业出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.GB 50021-2001(2009)Code for investigation of geotechnical engineering[S].Beijing:China Architecture and Building Press,2009.
    [7]汪闻韶.剪切波速在评估地基饱和砂层地震液化可能性中的应用[J].岩土工程学报,2001,23(6):655-658.WANG Wen-shao.Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level ground during earthquakes[J].Chinese Journal of Geotechnical Engineering,2001,23(6):655-658.
    [8]石兆吉,郁寿松.砂性土剪切波速与液化强度的关系[J].世界地震工程,1991,(3):16-23.SHI Zhao-ji,YU Shou-song.Sandy soil shear wave velocity and liquefaction strength[J].Journal of the World Earthquake Engineering,1991,(3):16-23.
    [9]刘颖.地震引起的海洋土液化的判别[J].世界地震工程,1987(1):27-29+57.LIU Ying.Identification of liquefaction of marine soil caused by earthquake[J].Journal of the World Earthquake Engineering,1987(1):27-29+57.
    [10]丁伯阳,张树清,李藩文.适合西北地区的Vs波预测砂土液化势公式[J].世界地震工程,1991(4):51-53.DING Bo-yang,ZHANG Shu-qing,LI Fan-wen.The judgement formula for the shear wave velocity of sand in the northwest region[J].World Earthquake Engineering,1991(4):51-57.
    [11]ANDRUS R D,STOKOE K H,CHUNG R M,et al.Guidelines for evaluating liquefaction resistance using shear wave velocity measurement and simplified procedures[M].Maryland:US Department of Commerce,Technology Administration,National Institute of Standards and Technology,1999.
    [12]KAYEN R,MOSS R E S,THOMPSON E M,et al.Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J].Journal of Geotechnical and Geoenvironmental Engineering,2013,139(3):407-419.
    [13]柯瀚,陈云敏.改进的判别砂土液化势的剪切波速法[J].地震学报,2000,22(6):637-644.KE Han,CHEN Yun-min.An improved method for evaluating liquefaction potential by the velocity of shear waves[J].Acta Seismologica Sinica,2000,22(6):637-644.
    [14]周燕国.土结构性的剪切波速表征及对动力特性的影响[D].杭州:浙江大学,2007.ZHOU Yan-guo.Shear wave velocity-based characterization of soil structure and its effects on dynamic behavior[D].Hangzhou:Zhejiang University,2007.
    [15]周燕国,陈云敏,柯瀚.砂土液化势剪切波速简化判别法的改进[J].岩石力学与工程学报,2005,24(13):2369-2375.ZHOU Yan-guo,CHEN Yun-min,KE Han.Improverment of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(13):2369-2375.
    [16]王建华,程国勇.饱和砂土的剪切波速与抗液化强度相关性研究[J].岩土工程学报,2005,27(4):369-373.WANG Jian-hua,CHENG Guo-yong.Study of correlation between the shear wave velocity and the liquefaction resistance of saturated sands[J].Chinese Journal of Geotechnical Engineering,2005,27(4):369-373.
    [17]JUANG C H,CHEN C J,JIANG T.Probabilistic framework for liquefaction potential by shear wave velocity[J].Journal of Geotechnical&Geoenvironmental Engineering,2001,127(8):670-678.
    [18]孔梦云,陈国兴,李小军,等.以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J].岩土力学,2015,36(5):1239-1252.KONG Meng-yun,CHEN Guo-xing,LI Xiao-jun,et al.Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J].Rock and Soil Mechanics,2015,36(5):1239-1260.
    [19]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 17742-2008中国地震烈度表[S].北京:中国标准出版社,2009.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China;Standardization Administration of the People's Republic of China.GB/T 17742-2008 The Chinese seismic intensity scale[S].Beijing:China Standards Press and China,2009.
    [20]陈卓识.现场剪切波速测试误差及其对地震动影响研究[D].哈尔滨:中国地震局工程力学研究所,2015.CHEN Zhuo-shi.The study of situ shear wave velocity test error and its effects on ground motion[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2015.
    [21]CETIN K O,SEED R B.Nonlinear shear mass participation factor(rd)for cyclic shear stress ratio evaluation[J].Soil Dynamics&Earthquake Engineering,2004,24(2):103-113.
    [22]YOUD T L,IDRISS I M.Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998NCEER?NSF workshops on evaluation of liquefaction resistance of soils[J].Journal of Geotechnical&Geoenvironmental Engineering,2001,127(4):297-313.
    [23]赵倩玉.我国规范标贯液化判别方法的改进研究[D].哈尔滨:中国地震局工程力学研究所,2013.ZHAO Qian-yu.Improvement of liquefaction discrimination method based on surveys of the standard penetration test data in Chinese code[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2013.
    [24]袁晓铭,曹振中.基于土层常规参数的液化发生概率计算公式及其可靠性研究[J].土木工程学报,2014,47(4):99-108.YUAN Xiao-ming,CAO Zhen-zhong.Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J].China Civil Engineering Journal,2014,47(4):99-108.
    [25]孙锐,赵倩玉,袁晓铭.液化判别的双曲线模型[J].岩土工程学报,2014,36(11):2061-2068.SUN Rui,ZHAO Qian-yu,YUAN Xiao-ming.Hyperbolic model for estimating liquefaction potential of sand[J].Chinese Journal of Geotechnical Engineering,2014,36(11):2062-2068.
    [26]中华人民共和国国家质量监督检验检疫总局.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.GB 50011-2010 Code for Seismic Design of Buildings[S].Beijing:China Architecture and Building Press,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700