用户名: 密码: 验证码:
拉萨地块南缘晚白垩世角闪辉长岩、花岗斑岩副矿物微量元素特征对成岩成矿的指示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Trace element geochemistry of zircon,apatite,and titanite of Late Cretaceous hornblende gabbro and granite porphyry in the southern Lhasa subterrane: Implications for petrogenesis and mineralization
  • 作者:谢富伟 ; 郎兴海 ; 唐菊兴 ; 肖鸿天 ; 马笛
  • 英文作者:XIE FuWei;LANG XingHai;TANG JuXing;XIAO HongTian;MA Di;MNR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation,College of Earth Science,Chengdu University of Technology;MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences;China University of Geosciences;
  • 关键词:角闪辉长岩 ; 花岗斑岩 ; 锆石 ; 榍石 ; 磷灰石 ; 拉萨地块南缘
  • 英文关键词:Hornblende gabbro;;Granite porphyry;;Zircon;;Apatite;;Titanite;;The southern Lhasa subterrane
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:成都理工大学地球科学学院自然资源部构造成矿成藏重点实验室;中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;中国地质大学;
  • 出版日期:2019-07-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划课题(2018YFC0604106、2018YFC0604105);; 中国地质调查局项目(DD20160346);; 深地资源成矿作用与矿产预测重点实验室开放基金项目(ZS1911)联合资助
  • 语种:中文;
  • 页:YSXB201907011
  • 页数:19
  • CN:07
  • ISSN:11-1922/P
  • 分类号:188-206
摘要
拉萨地块南缘记录了新特提斯洋俯冲到印度-欧亚大陆碰撞及碰撞后的岩浆作用,其中晚白垩世的岩浆作用对研究印度-欧亚大陆碰撞前成岩成矿作用具有重要的意义。本文以拉萨地块南缘100Ma的角闪辉长岩和68Ma花岗斑岩的锆石、磷灰石、榍石为研究对象,利用背散射、阴极发光(CL)、电子探针(EPMA)和LA-ICP-MS原位微区分析等方法,查明锆石、磷灰石、榍石的主、微量元素特征,进一步反演岩石源区性质、结晶历史及结晶条件,并对岩体含矿性进行评价,有助于探讨冈底斯成矿带晚白垩世岩浆成因机制和成矿潜力。研究结果表明,角闪辉长岩锆石初始饱和温度为598~626℃,锆石Ti结晶温度为645~758℃,磷灰石饱和温度为690~819℃,榍石Zr温度为602~778℃;磷灰石具有中等-弱的负铕异常(δEu=0. 67)、富集LREE,早期高温阶段锆石的结晶主要受到磷灰石结晶影响,随着温度降低,受到少量榍石结晶的影响;角闪辉长岩中的锆石在低的Hf、温度较高时却具有较高的Th、U含量显示岩浆源区受到更多俯冲板片出溶流体的影响,磷灰石具有较高的(La/Sm)N值以及Sr含量低于主岩,显示岩浆源区均一、熔体富Cl特征。花岗斑岩的锆石初始饱和温度为704~736℃,锆石Ti温度为630~799℃,磷灰石饱和温度为846~891℃,结合锆石的Ce/Sm、Yb/Gd以及磷灰石较大的负铕异常(δEu=0. 29),显示花岗斑岩中的锆石从高温到低温阶段都受到磷灰石和榍石的共同结晶影响,磷灰石的结晶受到斜长石影响;花岗斑岩中大部分锆石Ti结晶温度高于其初始饱和温度,磷灰石Sr-Ap/Sr-WR为0. 78~1. 45,具有较高的F/Cl(32. 87~67. 60)、低的(La/Sm)N,指示花岗斑岩岩浆源区不均一,受到多期岩浆熔体的脉冲式灌入并加入了更多镁铁质的岩浆熔体,其熔体具有低的Cl。此外,花岗斑岩锆石具有较高的Ce~(4+)/Ce~(3+)、磷灰石具有较高的SO_3、熔体中更富S,指示花岗斑岩具有高的氧逸度和成矿潜力。本文研究结果表明结合锆石、磷灰石和榍石微量元素特征可有效指示岩浆岩的源区组成、结晶历史、结晶条件以及成矿潜力,为岩石学的研究提供了一个新的思路。
        The southern Lhasa subterrane recorded magmatism related to Neo-Tethyan subduction,collision and post-collision between the two continents of Indian and Eurasian. The Late Cretaceous magmatism is of great significance to the study of precollisional petrogenesis and mineralization of the Indo-Eurasian continent. In this paper,zircon,apatite,and titanite from the 100 Ma hornblende gabbro and the 68 Ma granite porphyry in the southern Lhasa subterrane are studied. The main and trace elements of zircon,apatite,and titanite are identified by means of Back Scattering,Cathodoluminescence( CL),Electron Probe Analysis( EPMA) and LA-ICP-MS in situ microanalysis. The purpose of this paper is to further identify the magma sources,the crystallization histories and conditions of the magmatic rocks,and also to evaluate their ore-bearing properties,which is helpful to explore the genetic mechanisms and metallogenic potential of the Late Cretaceous magmatism in the Gangdese magmatic belt. For the studied hornblende gabbro,the results show that its zircon saturation and crystallization temperatures vary from 598 ~ 626℃ and 645 ~ 758℃,respectively,the apatite saturation temperatures vary from 690 ~ 819℃,and the titanite crystallization temperatures vary from 602 ~ 778℃. The chondritenormalized REE patterns of apatite grains from the hornblende gabbro show enriched LREE values with moderate to negative negative Eu anomalies( δEu = 0. 67). The zircon compositions from the hornblende gabbro were initially a result of high-temperature apatite and further cooling by minor titanite crystallization. The low Hf but high crystallization temperature zircon grains from the hornblende gabbro have high Th and U contents,showing the magma source of hornblende gabbro was modified by more slab-derived fluids. The magma source of hornblende gabbro is homogeneous,and the melt is rich in Cl as evidenced by the higher Sr contents and( La/Sm)Nvalues in apatite relative to the host rocks. For granite porphyry,the zircon saturation and crystallization temperatures vary from 704 ~ 736℃ and630 ~ 799℃,respectively,while the apatite saturation temperatures vary from 846 ~ 891℃. Combined with zircon Ce/Sm and Yb/Gd ratios and larger negative Eu anomalies of apatite( δEu = 0. 29),the results show the zircon compositions from granite porphyry were affected by the co-crystallization of apatite and titanite from high temperature to low temperature,and the crystallization of apatite grains were affected by plagioclase crystallization. Most zircons of the granite porphyry have higher crystallization temperatures than their zircon saturation temperatures combined with the apatite grains,since the later have low Sr-Ap/Sr-WR( 0. 78 ~ 1. 45),high F/Cl( 32. 87~ 67. 60) and low( La/Sm)N. The granite porphyry have heterogeneous magma source,which were affected by impulse magma melts and involved more mafic magma melts. Compared with hornblende gabbro,the melt of the granite porphyry has low Cl contents. In addition,the zircon grains have high Ce~(4+)/Ce~(3+),high apatite SO_3 and more S contents in the melt of granite porphyry,indicating that granite porphyry have high oxygen fugacity and ore-forming potential. The results of this study show that the trace element geochemistry of zircon,apatite and titanite can effectively identify the magma source composition,crystallization history,crystallization conditions and metallogenic potential of magmatic rocks,which provide a new idea for petrological research.
引文
Allégre CJ,Courtillot P,Tapponnier P,Hirn A,Mattauer M,Coulon C,Jaeger JJ,Achache J,Schrer U,Marcoux J,Burg JP,Girardeau J,Armijo R,Gariépy C,G9pel C,Li T,Xiao XC,Chen CF,Li GQ,Teng JW,Wang NW,Chen GM,Han TL,Wang XB,Den W,Sheng HB,Cao YG,Zhou J,Qiu HR,Bao PS,Wang SC,Wang BX,Zhou YX and Xu RH.1984.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,307(5946):17-22
    Anand R and Balakrishnan S.2011.Geochemical and Sm-Nd isotopic study of titanite from granitoid rocks of the eastern Dharwar craton,southern India.Journal of Earth System Science,120(2):237-251
    Bailey EH and Ragnarsdottir KV.1994.Uranium and thorium solubilities in subduction zoneuids.Earth and Planetary Science Letters,124(1-4):119-129
    Ballard JR,Palin JM and Campbell IH.2002.Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon:Application to porphyry copper deposits of northern Chile.Contributions to Mineralogy and Petrology,144(3):347-364
    Bea F.1996.Residence of REE,Y,Th and U in granites and crustal protoliths:Implications for the chemistry of crustal melts.Journal of Petrology,37(3):521-552
    Belousova EA,Walters S,Griffin WL and O’Reilly SY.2001.Traceelement signatures of apatites in granitoids from the Mt Isa Inlier,northwestern Queensland.Australian Journal of Earth Sciences,48(4):603-619
    Belousova EA,Griffin WL,O’Reilly SY and Fisher NI.2002.Apatite as an indicator mineral for mineral exploration:Trace-element compositions and their relationship to host rock type.Journal of Geochemical Exploration,76(1):45-69
    Cao MJ,Li GM,Qin KZ,Seitmuratova EY and Liu YS.2012.Major and trace element characteristics of apatites in granitoids from central Kazakhstan:Implications for petrogenesis and mineralization.Resource Geology,62(1):63-83
    Cao MJ,Qin KZ,Li GM,Li JX,Zhao JX,Evans NJ and Hollings P.2016.Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane,Tibet.Gondwana Research,39:386-400
    Che XD,Linnen RL,Wang RC,Groat LA and Brand AA.2013.Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia,Canada.The Canadian Mineralogist,51(3):415-438
    Chen L,Qin KZ,Li GM,Li JX,Xiao B,Zhao JX and Fan X.2015.Zircon U-Pb ages,geochemistry,and Sr-Nd-Pb-Hf isotopes of the nuri intrusive rocks in the Gangdese area,southern Tibet:Constraints on timing,petrogenesis,and tectonic transformation.Lithos,212-215:379-396
    Chou IM.1978.Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor.American Mineralogist,63(7-8):690-703
    Chu MF,Chung SL,Song B,Liu DY,O'Reilly SY,Pearson NJ,Ji JQand Wan DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology,34(9):745-748
    Chu MF,Wang KL,Griffin WL,Chung SL,O’Reilly SY,Pearson NJand Iizuka Y.2009.Apatite composition:Tracing petrogenetic processes in Transhimalayan granitoids.Journal of Petrology,50(10):1829-1855
    Chung SL,Chu MF,Zhang YQ,Xie YW,Lo CH,Lee TY,Lan CY,Li XH,Zhang Q and Wang YZ.2005.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.Earth-Science Reviews,68(3-4):173-196
    Colombini LL,Miller CF,Gualda GAR,Wooden JL and Miller JS.2011.Sphene and zircon in the Highland Range volcanic sequence(Miocene,southern Nevada,USA):Elemental partitioning,phase relations,and influence on evolution of silicic magma.Mineralogy and Petrology,102(1-4):29-50
    Cooke DR,Hollings P and Walshe JL.2005.Giant porphyry deposits:Characteristics,distribution,and tectonic controls.Economic Geology 100(5):801-818
    Coulon C,Maluski H,Bollinger C and Wang S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating,petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,79(3-4):281-302
    Deng XD,Li JW,Zhou MF,Zhao XF and Yan DR.2015.In-situ LA-ICPMS trace elements and U-Pb analysis of titanite from the Mesozoic Ruanjiawan W-Cu-Mo skarn deposit,Daye district,China.Ore Geology Reviews,65:990-1004
    Dewey JF,Shackleton RM,Chang CF and Sun YY.1988.The tectonic evolution of the Tibetan Plateau.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,327(1594):379-413
    Dong YH,Xu JF,Zeng QG,Wang Q,Mao GZ and Li J.2006.Is there a Neo-Tethys’subduction record earlier than arc volcanic rocks in the Sangri Group?Acta Petrologica Sinica,22(3):661-668(in Chinese with English abstract)
    Du DD,Qu XM,Wang GH,Xin HB and Liu ZB.2011.Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture,Tibet:Evidence from zircon U-Pb LA-ICP-MS dating and petrogeochemistry of arc granites.Acta Petrologica Sinica,27(7):1993-2002(in Chinese with English abstract)
    Elliott T,Plank T,Zindler A,White W and Bourdon B.1997.Element transport from slab to volcanic front at the Mariana arc.Journal of Geophysical Research:Solid Earth,102(B7):14991-15019
    Ferry JM and Watson EB.2007.New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers.Contributions to Mineralogy and Petrology,154(4):429-437
    Flynn RT and Burnham CW.1978.An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts.Geochimica et Cosmochimica Acta,42(6):685-701
    Frost BR,Chamberlain KR and Schumacher JC.2001.Sphene(titanite):Phase relations and role as a geochronometer.Chemical Geology,172(1-2):131-148
    Fu B,Page FZ,Cavosie AJ,Fournelle J,Kita NT,Lackey JS,Wilde SAand Valley JW.2008.Ti-in-zircon thermometry:Applications and limitations.Contributions to Mineralogy and Petrology,156(2):197-215
    Fujimaki H.1986.Partition coefficients of Hf,Zr,and REE between zircon,apatite,and liquid.Contributions to Mineralogy and Petrology,94(1):42-45
    Gao XY,Zheng YF,Chen YX and Guo JL.2012.Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHPmetagranite in the Dabie orogen.Lithos,136-139:93-108
    Grimes CB,Wooden JL,Cheadle MJ and John BE.2015.“Fingerprinting”tectono-magmatic provenance using trace elements in igneous zircon.Contributions to Mineralogy and Petrology,170(5-6):46
    Guan Q,Zhu DC,Zhao ZD,Dong GC,Mo XX,Liu YS,Hu ZC and Yuan HL.2011.Zircon U-Pb chronology,geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications.Acta Petrologica Sinica,27(7):2083-2094(in Chinese with English abstract)
    Guo JF,O’Reilly SY and Griffin WL.1996.Zircon inclusions in corundum megacrysts:I.Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts.Geochimica et Cosmochimica Acta,60(13):2347-2363
    Guo LS,Liu YL,Liu SW,Cawood PA,Wang ZH and Liu HF.2013.Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt,southern Tibet:Implications for early history of the Neo-Tethys.Lithos,179:320-333
    Hanchar JM and Van Westrenen W.2007.Rare earth element behavior in zircon-melt systems.Elements,3(1):37-42
    Hayden LA,Watson EB and Wark DA.2008.A thermobarometer for sphene(titanite).Contributions to Mineralogy and Petrology,155(4):529-540
    He SD,Kapp P,DeC elles PG,Gehrels GE and Heizler M.2007.Cretaceous-Tertiary geology of the Gangdese arc in the Linzhou area,southern Tibet.Tectonophysics,433(1-4):15-37
    Hoskin PWO,Kinny PD,Wyborn D and Chappell BW.2000.Identifying accessory mineral saturation during differentiation in granitoid magmas:An integrated approach.Journal of Petrology,41(9):1365-1396
    Huebner JS.1971.Buffering techniques for hydrostatic systems at elevated pressure.In:Ulmer GC(ed.).Research Techniques for High Pressure and High Temperature.New York:Springer-Verlag,123-177
    Imai A.2002.Metallogenesis of porphyry Cu deposits of the western Luzon arc,Philippines:K-Ar ages,SO3contents of microphenocrystic apatite and significance of intrusive rocks.Resource Geology,52(2):147-161
    Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3-4):229-245
    Ji WQ,Wu FY,Chung SL and Liu CZ.2014.The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane,southern Tibet.Lithos,210-211:168-180
    Ji XH,Meng XJ,Yang ZS,Zhang Q,Tian SH,Li ZQ,Liu YC and Yu YS.2014.The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo,Tibet and its geological significance.Geology and Exploration,50(2):281-290(in Chinese with English abstract)
    Jiang X,Zhao ZD,Zhu DC,Zhang FQ,Dong GC,Mo XX and Guo TY.2010.Zircon U-Pb geochronology and Hf isotopic geochemistry of Jiangba,Bangba,and Xiongba granitoids in western Gangdese,Tibet.Acta Petrologica Sinica,26(7):2155-2164(in Chinese with English abstract)
    Jiang ZQ,Wang Q,Li ZX,Wyman DA,Tang GJ,Jia XH and Yang YH.2012.Late Cretaceous(ca.90Ma)adakitic intrusive rocks in the Kelu area,Gangdese belt(southern Tibet):Slab melting and implications for Cu-Au mineralization.Journal of Asian Earth Sciences,53:67-81
    Jiang ZQ,Wang Q,Wyman DA,Li ZX,Yang JH,Shi XB,Ma L,Tang GJ,Gou GN,Jia XH and Guo HF.2014.Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene(91~30Ma)intrusive rocks in the Chanang-Zedong area,southern Gangdese.Lithos,196-197:213-231
    Jiang ZQ,Wang Q,Wyman DA,Shi XB,Yang JH,Ma L and Gou GN.2015.Zircon U-Pb geochronology and geochemistry of Late Cretaceous-Early Eocene granodiorites in the southern Gangdese batholith of Tibet:Petrogenesis and implications for geodynamics and Cu±Au±Mo mineralization.International Geology Review,57(3):373-392
    Kang ZQ,Xu JF,Chen JL and Wang BD.2009.Geochemistry and origin of Cretaceous adakites in Mamuxia Formation,Sangri Group,South Tibet.Geochimica,38(4):334-344(in Chinese with English abstract)
    Kang ZQ,Xu JF,Chen JL,Wang BD and Dong YH.2010.The geochronology of Sangri Group volcanic rocks in Tibet:Constraints from later Mamen intrusions.Geochimica,39(6):520-530(in Chinese with English abstract)
    Kang ZQ,Xu JF,Wilde SA,Feng ZH,Chen JL,Wang BD,Fu WC and Pan HB.2014.Geochronology and geochemistry of the Sangri Group volcanic rocks,Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc.Lithos,200-201:157-168
    Keppler H.1996.Constraints from partitioning experiments on the composition of subduction-zone fluid.Nature,380(6571):237-240
    Konecke BA,Fiege A,Simon AC,Parat F and Stechern A.2017.Covariability of S6+,S4+,and S2-in apatite as a function of oxidation state:Implications for a new oxybarometer.American Mineralogist,102(3):548-557
    Lang XH,Tang JX,Li ZJ,Huang Y,Ding F,Yang HH,Xie FW,Zhang L,Wang Q and Zhou Y.2014.U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt,southern Tibet,PRC.Journal of Asian Earth Sciences,79:608-622
    Lee HY,Chung SL,Wang YB,Zhu DC,Yang JH,Song B,Liu DY and Wu FY.2007.Age,petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou Basin,southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes.Acta Petrologica Sinica,23(2):493-500(in Chinese with English abstract)
    Lee HY,Chung SL,Lo CH,Ji JQ,Lee TY,Qian Q and Zhang Q.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record.Tectonophysics,477(1-2):20-35
    Lee HY,Chung SL,Ji JQ,Qian Q,Gallet S,Lo CH,Lee TY and Zhang Q.2012.Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions,southern Tibet.Journal of Asian Earth Sciences,53:96-114
    Lee RG,Dilles JH,Tosdal RM,Wooden JL and Mazdab FK.2017.Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit,Chile,based on trace element composition and U/Pb age of zircons.Economic Geology,112(2):245-273
    Li HF,Tang JX,Hu GY,Ding S,Li Z,Xie FW,Teng L and Cui SY.2019.Fluid inclusions,isotopic characteristics and geochronology of the Sinongduo epithermal Ag-Pb-Zn deposit,Tibet,China.Ore Geology Reviews,107:692-706
    Liang HY,Wei QR,Xu JF,Hu GQ and Allen C.2010.Study on zircon LA-ICP-MS U-Pb age of skarn Cu mineralization related intrusion in the southern margin of the Gangdese ore belt,Tibet and its geological implication.Acta Petrologica Sinica,26(6):1692-1698(in Chinese with English abstract)
    Lin B,Tang JX,Chen YC,Song Y,Greg H,Wang Q,Yang C,Fang X,Duan JL,Yang HH,Liu ZB,Wang YY and Feng J.2017.Geochronology and genesis of the Tiegelongnan porphyry Cu(Au)deposit in Tibet:Evidence from U-Pb,Re-Os dating and Hf,S,and H-O isotopes.Resource Geology,67(1):1-21
    Lin B,Tang JX,Chen YC,Baker M,Song Y,Yang HH,Wang Q,He W and Liu ZB.2019.Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district,Tibet.Gondwana Research,66:168-182
    Liu YS,Hu ZC,Gao S,Günther D,Xu J,Gao CG and Chen HH.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
    Lu YJ,Loucks RR,Fiorentini ML,McC uaig TC,Evans NJ,Yang ZM,Hou ZQ,Kirkland CL,Parra-Avila LA and Kobussen A.2016.Zircon compositions as a pathfinder for porphyry Cu±Mo±Aumineral deposits.In:Richards JP(ed.).Tectonics and Metallogeny of the Tethyan Orogenic Belt.Society of Economic Geologists,Special Publication 19:329-347
    Ma L,Wang Q,Li ZX,Wyman DA,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013a.Early Late Cretaceous(ca.93Ma)norites and hornblendites in the Milin area,eastern Gangdese:Lithosphereasthenosphere interaction during slab roll-back and an insight into early Late Cretaceous(ca.100~80Ma)magmatic“flare-up”in southern Lhasa(Tibet).Lithos,172-173:17-30
    Ma L,Wang Q,Wyman DA,Jiang ZQ,Yang JH,Li QL,Gou GN and Guo HF.2013b.Late Cretaceous crustal growth in the Gangdese area,southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro.Chemical Geology,349-350:54-70
    Ma L,Wang Q,Wyman DA,Li ZX,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013c.Late Cretaceous(100~89Ma)magnesian charnockites with adakitic affinities in the Milin area,eastern Gangdese:Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet.Lithos,175-176:315-332
    Ma L,Wang Q,Wyman DA,Jiang ZQ,Wu FY,Li XH,Yang JH,Gou GN and Guo HF.2015.Late Cretaceous back-arc extension and arc system evolution in the Gangdese area,southern Tibet:Geochronological,petrological,and Sr-Nd-Hf-O isotopic evidence from Dagze diabases.Journal of Geophysical Research:Solid Earth,120(9):6159-6181
    Mao M,Rukhlov AS,Rowins SM,Spence J and Coogan LA.2016.Apatite trace element compositions:A robust new tool for mineral exploration.Economic Geology,111(5):1187-1222
    Mazdab FK.2009.Characterization of flux-grown trace-element-doped titanite using the high-mass-resolution ion microprobe(SHRIMP-RG).The Canadian Mineralogist,47(4):813-831
    McD ermid IRC,Aitchison JC,Davis AM,Harrison TM and Grove M.2002.The Zedong terrane:A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone,southeastern Tibet.Chemical Geology,187(3-4):267-277
    McL eod GW,Dempster TJ and Faithfull JW.2011.Deciphering magmamixing processes using zoned titanite from the Ross of Mull Granite,Scotland.Journal of Petrology,52(1):55-82
    Meng FY,Zhao ZD,Zhu DC,Zhang LL,Guan Q,Liu M,Yu F and Mo XX.2010.Petrogenesis of Late Cretaceous adakite-like rocks in Mamba from the eastern Gangdese,Tibet.Acta Petrologica Sinica,26(7):2180-2192(in Chinese with English abstract)
    Meng YK,Dong HW,Cong Y,Xu ZQ and Cao H.2016a.The earlystage evolution of the Neo-Tethys Ocean:Evidence from granitoids in the middle Gangdese batholith,southern Tibet.Journal of Geodynamics,94-95:34-49
    Meng YK,Xu ZQ,Santosh M,Ma XX,Chen XJ,Guo GL and Fu L.2016b.Late Triassic crustal growth in southern Tibet:Evidence from the Gangdese magmatic belt.Gondwana Research,37:449-464
    Micko J.2010.The geology and genesis of the Central Zone alkalic copper-gold porphyry deposit,galore creek district,northwestern British Columbia,Canada.Ph.D.Dissertation.Vancouver:The University of British Columbia,1-387
    Miles AJ,Graham CM,Hawkesworth CJ,Gillespie MR,Hinton RW and EIMF.2013.Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon.Contributions to Mineralogy and Petrology,166(1):1-19
    Miller CF,McD owell SM and Mapes RW.2003.Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance.Geology,31(6):529-532
    Miller JS and Wooden JL.2004.Residence,resorption and recycling of zircons in Devils Kitchen Rhyolite,Coso volcanic field,California.Journal of Petrology,45(11):2155-2170
    Mo XX,Hou ZQ,Niu YL,Dong GC,Qu XM,Zhao ZD and Yang ZM.2007.Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,96(1-2):225-242
    Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continentalcrust growth:A case study of the Paleogene Linzizong volcanicsuccession in southern Tibet.Chemical Geology,250(1-4):49-67
    Murphy MA,Yin A,Harrison TM,Dürr SB,Chen Z,Ryerson FJ,Kidd WSF,Wang X and Zhou X.1997.Did the Indo-Asian collision alone create the Tibetan Plateau?Geology,25(8):719-722
    Myers J and Eugster H P.1983.The system Fe-Si-O:Oxygen buffer calibrations to 1,500K.Contributions to Mineralogy and Petrology,82(1):75-90
    Olin PH and Wolff JA.2012.Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid.Lithos,128-131:46-54
    Pan GT,Mo XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese orogenic belt and its evolution.Acta Petrologica Sinica,22(3):521-533(in Chinese with English abstract)
    Pan GT,Wang LQ,Li RS,Yuan SH,Ji WH,Yin FG,Zhang WP and Wang BD.2012.Tectonic evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,53:3-14
    Pan YM,Fleet ME and MacRae ND.1993.Late alteration in titanite(CaTiSiO5):Redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal.Geochimica et Cosmochimica Acta,57(2):355-367
    Pan YM and Fleet ME.2002.Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors.Reviews in Mineralogy and Geochemistry,48(1):13-49
    Parat F and Holtz F.2004.Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions.Contributions to Mineralogy and Petrology,147(2):201-212
    Parat F and Holtz F.2005.Sulfur partition coefficient between apatite and rhyolite:The role of bulk S content.Contributions to Mineralogy and Petrology,150(6):643-651
    Parat F,Holtz F and Klügel A.2011.S-rich apatite-hosted glass inclusions in xenoliths from La Palma:Constraints on the volatile partitioning in evolved alkaline magmas.Contributions to Mineralogy and Petrology,162(3):463-478
    Peng G,Luhr JF and McG ee JJ.1997.Factors controlling sulfur concentrations in volcanic apatite.American Mineralogist,82(11-12):1210-1224
    Piccoli P and Candela P.1994.Apatite in felsic rocks:A model for the estimation of initial halogen concentrations in the Bishop Tuff(Long Valley)and Tuolumne Intrusive Suite(Sierra Nevada Batholith)magmas.American Journal of Science,294(1):92-135
    Piccoli P,Candela P and Rivers M.2000.Interpreting magmatic processes from accessory phases titanite:A small-scale recorder of large-scale processes.Earth and Environmental Science Transactions of the Royal Society of Edinburgh,91(1-2):257-267
    Prowatke S and Klemme S.2006.Trace element partitioning between apatite and silicate melts.Geochimica et Cosmochimica Acta,70(17):4513-4527
    Richards JP.2003.Tectono-magmatic precursors for porphyry Cu-(MoAu)deposit formation.Economic Geology,98(8):1515-1533
    Schaltegger U,Fanning CM,Günther D,Maurin JC,Schulmann K and Gebauer D.1999.Growth,annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:Conventional and in-situ U-Pb isotope,cathodoluminescence and microchemical evidence.Contributions to Mineralogy and Petrology,134(2-3):186-201
    Schrer U,Xu RH and Allègre CJ.1984.U-Pb geochronology of Gangdese(Transhimalaya)plutonism in the Lhasa-Xigaze region,Tibet.Earth and Planetary Science Letters,69(2):311-320
    Sha LK and Chappell BW.1999.Apatite chemical composition,determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry,as a probe into granite petrogenesis.Geochimica et Cosmochimica Acta,63(22):3861-3881
    Shannon RD.1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallographica Section A,32(5):751-767
    Sillitoe RH.2010.Porphyry copper systems.Economic Geology,105(1):3-41
    Smith MP,Storey CD,Jeffries TE and Ryan C.2009.In situ U-Pb and trace element analysis of accessory minerals in the Kiruna district,Norrbotten,Sweden:New constraints on the timing and origin of mineralization.Journal of Petrology,50(11):2063-2094
    Song Y,Yang C,Wei SG,Yang HH,Fang X and Lu HT.2018.Tectonic control,reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu(Au)deposit,central Tibet,China.Minerals,8(9):398
    Song Y,Zeng QG,Liu HY,Liu ZB,Li HF and Dexi YZ.2019.An innovative perspective for the evolution of Bangong-Nujiang Ocean:Also discussing the Paleo-and Neo-Tethys conversion.Acta Petrologica Sinica,35(3):625-641(in Chinese with English abstract)
    Streck MJ and Dilles JH.1998.Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith.Geology,26(6):523-526
    Tang JX,Lang XH,Xie FW,Gao YM,Li ZJ,Huang Y,Ding F,Yang HH,Zhang L,Wang Q and Zhou Y.2015.Geological characteristics and genesis of the Jurassic No.I porphyry Cu-Au deposit in the Xiongcun district,Gangdese porphyry copper belt,Tibet.Ore Geology Reviews,70:438-456
    Tang JX,Ding S,Meng Z,Hu GY,Gao YM,Xie FW,Li Z,Yuan M,Yang ZY,Chen GR,Li YH,Yang HY and Fu YG.2016.The first discovery of the low sulfidation epithermal deposit in Linzizong volcanics,Tibet:A case study of the Sinongduo Ag polymetallic deposit.Acta Geoscientica Sinica,37(4):461-470(in Chinese with English abstract)
    Tang JX,Wang Q,Yang HH,Gao X,Zhang ZB and Zou B.2017.Mineralization,exploration and resource potential of porphyry-skarnepithermal copper polymetallic deposits in Tibet.Acta Geoscientica Sinica,38(5):571-613(in Chinese with English abstract)
    Tiepolo M,Oberti R and Vannucci R.2002.Trace-element incorporation in titanite:Constraints from experimentally determined solid/liquid partition coefficients.Chemical Geology,191(1-3):105-119
    Trail D,Watson EB and Tailby ND.2012.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas.Geochimica et Cosmochimica Acta,97:70-87
    Volkmer JE,Kapp P,Guynn JH and Lai QZ.2007.Cretaceous-Tertiary structural evolution of the north central Lhasa terrane,Tibet.Tectonics,26(6):TC6007
    Watson EB.1976.Two-liquid partition coefficients:Experimental data and geochemical implications.Contributions to Mineralogy and Petrology,56(1):119-134
    Watson EB and Green TH.1981.Apatite/liquid partition coefficients for the rare earth elements and strontium.Earth and Planetary Science Letters,56:405-421
    Watson EB and Harrison TM.1983.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types.Earth and Planetary Science Letters,64(2):295-304
    Watson EB,Wark DA and Thomas JB.2006.Crystallization thermometers for zircon and rutile.Contributions to Mineralogy and Petrology,151(4):413-433
    Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008a.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201
    Wen DR,Chung SL,Song B,Iizuka Y,Yang HJ,Ji JQ,Liu DY and Gallet S.2008b.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and tectonic implications.Lithos,105(1-2):1-11
    Xie FW,Tang JX,Chen YC and Lang XH.2018a.Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district,southern Gangdese porphyry copper belt:Implications for petrogenesis andmineralization.Ore Geology Reviews,96:98-114
    Xie FW,Tang JX,Lang XH and Ma D.2018b.The different sources and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane,Tibet:Evidence from the trace element compositions of zircon,apatite,and titanite.Lithos,314-315:447-462
    Xie FW,Lang XH,Tang JX,Ma D and Zou B.2018c.Late Cretaceous magmatic activity in the southern Lhasa terrane:Insights from the Dazhuqu hornblende gabbro and the Xietongmen granite porphyry.International Geology Review,doi:10.1080/00206814.2018.1531273
    Xu LL,Bi XW,Hu RZ,Tang YY,Wang XS and Xu Y.2015.LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang-Red River alkaline igneous belt,SW China.Mineralogy and Petrology,109(2):181-200
    Ye LJ,Zhao ZD,Liu D,Zhu DC,Dong GC,Mo XX,Hu ZC and Liu YS.2015.Late Cretaceous diabase and granite dike in Namling,Tibet:Petrogenesis and implications for extension.Acta Petrologica Sinica,31(5):1298-1312(in Chinese with English abstract)
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280
    Zhang XQ,Zhu DC,Zhao ZD,Sui QL,Wang Q,Yuan SH,Hu ZC and Mo XX.2012.Geochemistry,zircon U-Pb geochronology and in-situ Hf isotope of the Maiga batholith in Coqen,Tibet:Constraints on the petrogenesis of the Early Cretaceous granitoids in the central Lhasa Terrane.Acta Petrologica Sinica,28(5):1615-1634(in Chinese with English abstract)
    Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17(4):615-631
    Zhang ZM,Dong X,Xiang H,He ZY and Liou JG.2014.Metagabbros of the Gangdese arc root,South Tibet:Implications for the growth of continental crust.Geochimica et Cosmochimica Acta,143:268-284
    Zhao Z,Hu DG,Wu ZH and Lu L.2012.Molybdenite Re-Os isotopic dating of Sangbujiala copper deposit in the southern margin of the eastern Gangdese section,Tibet,and its geological implications.Journal of Geomechanics,18(2):178-186(in Chinese with English abstract)
    Zhou S,Mo XX,Dong GC,Zhao ZD,Qiu RZ,Guo TY and Wang LL.2004.40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin,Tibet,China,and their geological implications.Chinese Science Bulletin,49(18):1970-1979
    Zhu DC,Pan GT,Chung SL,Liao ZL,Wang LQ and Li GM.2008.SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation,southern Gangdese,South Tibet.International Geology Review,50(5):442-471
    Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
    Zirner ALK,Marks MAW,Wenzel T,Jacob DE and Markl G.2015.Rare earth elements in apatite as a monitor of magmatic and metasomatic processes:The Ilímaussaq complex,South Greenland.Lithos,228-229:12-22
    董彦辉,许继峰,曾庆高,王强,毛国政,李杰.2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报,22(3):661-668
    杜德道,曲晓明,王根厚,辛洪波,刘治博.2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报,27(7):1993-2002
    管琪,朱弟成,赵志丹,董国臣,莫宣学,刘勇胜,胡兆初,袁洪林.2011.西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义.岩石学报,27(7):2083-2094
    纪现华,孟祥金,杨竹森,张乾,田世洪,李振清,刘英超,于玉帅.2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探,50(2):281-290
    姜昕,赵志丹,朱弟成,张凤琴,董国臣,莫宣学,郭铁鹰.2010.西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学.岩石学报,26(7):2155-2164
    康志强,许继峰,陈建林,王保弟.2009.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因.地球化学,38(4):334-344
    康志强,许继峰,陈建林,王保弟,董彦辉.2010.西藏南部桑日群火山岩的时代:来自晚期马门侵入体的约束.地球化学,39(6):520-530
    李皓揚,锺孙霖,王彦斌,朱弟成,杨进辉,宋彪,刘敦一,吴福元.2007.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报,23(2):493-500
    梁华英,魏启荣,许继峰,胡光黔,Allen C.2010.西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义.岩石学报,26(6):1692-1698
    孟繁一,赵志丹,朱弟成,张亮亮,管琪,刘敏,于枫,莫宣学.2010.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报,26(7):2180-2192
    潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533
    宋扬,曾庆高,刘海永,刘治博,李海峰,德西央宗.2019.班公湖-怒江洋形成演化新视角:兼论西藏中部古-新特提斯转换.岩石学报,35(3):625-641
    唐菊兴,丁帅,孟展,胡古月,高一鸣,谢富伟,李壮,袁梅,杨宗耀,陈国荣,李于海,杨洪钰,付燕刚.2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床---以斯弄多银多金属矿为例.地球学报,37(4):461-470
    唐菊兴,王勤,杨欢欢,高昕,张泽斌,邹兵.2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报,38(5):571-613
    叶丽娟,赵志丹,刘栋,朱弟成,董国臣,莫宣学,胡兆初,刘勇胜.2015.西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景.岩石学报,31(5):1298-1312
    张晓倩,朱弟成,赵志丹,隋清霖,王青,袁四化,胡兆初,莫宣学.2012.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素---对中部拉萨地块早白垩世花岗岩类岩石成因的约束.岩石学报,28(5):1615-1634
    赵珍,胡道功,吴珍汉,陆露.2012.西藏冈底斯东段南缘桑布加拉辉钼矿Re-Os定年及地质意义.地质力学学报,18(2):178-186
    (1)周清山,苟金. 1997. 1∶200000谢通门县幅地质图
    (2)胡敬仁. 2002. 1∶250000日喀则市幅地质图

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700