用户名: 密码: 验证码:
基于能量观点的混合层流优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hybrid laminar flow optimization design from energy view
  • 作者:史亚云 ; 郭斌 ; 刘倩 ; 白俊强 ; 杨体浩 ; 卢磊
  • 英文作者:SHI Yayun;GUO Bin;LIU Qian;BAI Junqiang;YANG Tihao;LU Lei;School of Aeronautics,Northwestern Polytechnical University;Xi'an Institute of Modern Control Technology;
  • 关键词:气动优化设计 ; 层流转捩 ; 主动控制 ; 混合层流控制(HLFC) ; 能量消耗
  • 英文关键词:aerodynamic optimization design;;laminar transition;;active control;;hybrid laminar flow control(HLFC);;energy consumption
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:西北工业大学航空学院;西安现代控制技术研究所;
  • 出版日期:2019-02-22 13:06
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.316
  • 基金:国家“973”计划(2014CB744804)~~
  • 语种:中文;
  • 页:BJHK201906013
  • 页数:13
  • CN:06
  • ISSN:11-2625/V
  • 分类号:107-119
摘要
为了合理地在混合层流设计中减小阻力,降低能量消耗,利用吸气控制功率消耗与阻力、吸气速度的关系式,建立了考虑以吸气功率最小为优化目标的优化设计方法。该优化设计方法采用了自由变形(FFD)参数化方法,紧支型的径向基函数(RBF)动网格技术,改进的微分进化(DE)算法,以及耦合基于eN转捩预测的RANS流场高精度求解器。针对25°后掠角的跨声速无限展长后掠翼,进行了以阻力最小为优化目标的均匀吸气和以功率消耗最小为优化目标的分布式吸气的混合层流优化设计。优化结果表明,基于能量观点的优化结果在雷诺数10×10~6下可以达到均匀吸气的阻力收益,相比初始构型,阻力降低了29. 1%,上下翼面转捩位置分别推迟了18%和15%弦长,功耗降低了1. 7%;而在雷诺数20×10~6状态下,相比初始构型,阻力减小了41. 3%,比均匀吸气阻力优化结果提高了4. 5%,上下翼面转捩位置分别推迟了52%和14%弦长,功耗降低了8. 14%。优化结果表明,建立的基于能量观点的混合层流优化方法是可行的。
        For decreasing the drag and lowering the energy consumption for the hybrid laminar flow design correctly,the optimization system,whose object can be set as minimum energy cost,is built by correlating the relationship of suction control power consumption and drag. The optimization system includes the free freedom deformation( FFD) parameterization,the compact radial basis function( RBF) dynamic mesh method,the improved differential evolution( DE),and the high-fidelity Reynolds averaged Navier-Stokes( RANS) solver,which couples with the eNtransition prediction method. For the infinite spanwise wing with 25° sweep angle,there are two optimizations: one is the uniform suction with minimum drag object; one is the distributed suction with minimum energy consumption object. At Reynolds number 10 × 106,the optimization results with minimum power consumption can obtain the same drag coefficient benefit with 29. 1% decrease. The transition location is extended by 18% chord on the upper surface,while 15% chord on the lower surface. The power consumption is reduced by 1. 7%. At Reynolds number 20 × 106,the distributed suction result can get more benefit than the uniform suction. The drag is reduced by 41. 3% compared with the original configuration,which is improved by 4. 5% compared with uniform suction dirstibution. The transition locations are extended by 52% chord on the upper surface and 14% chord on the lower surface. The suction power consumption is reduced by 8. 14%. Thus,the optimization results show that the proposed hybrid laminar flow optimization method from energy view is reliable.
引文
[1]CAMPBELL R L,MICHELLE N L.Natural laminar flow design for wings with moderate sweep:AIAA.2016-4326[R].Reston:AIAA,2016.
    [2]SCHRAUF G.Status and perspectives of laminar flow[J].The Aeronautical Journal,2005,109(1102):639-644.
    [3]SCHRAUF G.The need of large-scale HLFC testing in europe[EB/OL].(2013)[2018-10-17].http:∥www.aflonext.eu/files/pdf/schrauf_2013_HLFC_research-needs_v2.pdf.
    [4]BECK N.Drag reduction by laminar flow control[J].Energies,2018,11(1):252.
    [5]朱自强,鞠胜军,吴宗成.层流流动主/被动控制技术[J].航空学报,2016,37(7):2065-2090.ZHU Z Q,JU S J,WU Z C.Laminar flow active/passive control technology[J].Acta Aeronautica et Astronautica Sinica,2016,37(7):2065-2090(in Chinese).
    [6]SHI Y Y,BAI J Q,HUA J,et al.Numerical analysis and optimization of boundary layer suction on airfoils[J].Chinese Journal of Aeronautics,2015,28(2),357-367.
    [7]KRISHNAN K S G,BERTRAM O,SEIBEL O.Review of hybrid laminar flow control systems[J].Progress in Aerospace Sciences,2017,93:24-52.
    [8]王菲,王强,郭辉,等.升华法的后掠翼混合层流控制研究[J].实验流体力学,2010,24(3):54-58.WANG F,WANG Q,GUO H,et al.Investigation of HLFC on swept wing based on sublimation technique[J].Journal of Experiments in Fluid Mechanics,2010,24(3):54-58(in Chinese).
    [9]RISSE K,STUMPF E.Conceptual aircraft design with hybrid laminar flow control[J].CEAS Aeronautical Journal,2014,5(3):333-343.
    [10]杨体浩,白俊强,史亚云,等.考虑吸气分布影响的HLFC机翼优化设计[J].航空学报,2017,38(12):121158.YANG T H,BAI J Q,SHI Y Y,et al.Optimization design for HLFC wings considering influence of suction distribution[J].Acta Aeronautica et Astronautica Sinica,2017,38(12):121158(in Chinese).
    [11]杨一雄,杨体浩,白俊强,等.后掠翼优化设计的若干问题[J].航空学报,2018,39(1):121448.YANG Y X,YANG T H,BAI J Q,et al.Problems in optimization design of HLFC sweep wing[J].Acta Aeronautica et Astronautica Sinica,2018,39(1):121448(in Chinese).
    [12]XU J K,FU Z Y,BAI J Q.Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J].Aerospace Science and Technology,2018,80:221-231.
    [13]SHI Y Y,GROSS R,MADER C A,et al.Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations AIAA-2018-0819[R].Reston:AIAA,2018.
    [14]CEBECI T.Stability and yransition:Theory and application[M].Berlin:Springer,2004.
    [15]BROADHURST M S,SHERWIN S J.The parabolised stability equations for 3D-flows:Implementation and numerical stability[J].Applied Numerical Mathematics,2008,58(7):1017-1029.
    [16]JUNIPER M P,HANIFI A,THEOFILIS V.Modal stability theorylecture notes from the flow-nordita summer school on advanced instability methods for complex flows[J].Applied Mechanics Reviews,2014,66(2):024804.
    [17]SENGUPTA T K,CHATURVEDI V,KUMAR P,et al.Computation of leading edge contamination[J].Computers&Fluids,2004,33(7):927-951.
    [18]SCHRAUF G,PERRAUD J,VITIELLO D,et al.Comparison of boundary-layer transition predictions using flight test data[J].Journal of Aircraft,1998,35(6):891-897.
    [19]LAWSON S,CIARELLA A,WONG P W.Development of experimental techniques for hybrid laminar flow control in the ARA transonic wind tunnel[C]∥2018 Applied Aerodynamics Conference,2018.
    [20]XU J K,BAI J Q,QIAO L,et al.Fully local formulation of a transition closure model for transitional flow simulations[J].AIAA Journal,2016,54(10):3015-3023.
    [21]RIOUAL J L,NALSON P A,HACKENBERG P,et al.Optimum drag balance for boundary-layer suction[J].Journal of Aircraft,1996,33(2):435-438.
    [22]PRALITS J O.Optimal design of natural and hybrid laminar flow control on wings[D].Stockholm:Royal Institute of Technology,2003.
    [23]陈颂,白俊强,孙智伟,等.基于DFFD技术的翼型气动优化设计[J].航空学报,2014,35(3):695-705.CHEN S,BAI J Q,SUN Z W,et al.Aerodynamjc optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica,2014,35(3):695-705(in Chinese).
    [24]康忠良,闫超.适用于混合网格的约束最小二乘重构方法[J].航空学报,2012,33(9):1598-1605.KANG Z L,YAN C.Constrainedleast-squares reconstruction method for mixed grids[J].Acta Aeronautica et Astronautica Sinica,2012,33(9):1598-1605(in Chinese).
    [25]唐得志,王道波,王建宏,等.直接加权优化辨识中未知权重值的迭代选取[J].系统工程与电子技术,2010,35(11):2376-2383.TANG Z D,WANG D P,WANG J H,et al.Iterative selection of unknown weights in direct weight optimization identification[J].Systems Engineering and Electronics,2010,35(7):2376-2383(in Chinese).
    [26]杨体浩,白俊强,王丹,等.考虑发动机干扰的尾吊布局后体气动优化设计[J].航空学报,2014,35(7):1836-1844.YANG T H,BAI J Q,WANG D,et al.Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J].Acta Aeronautica et Astronautica Sinica,2014,35(7):1836-1844(in Chinese).
    [27]邓凯文,陈海昕.基于差分进化和RBF响应面的混合优化算法[J].力学学报,2017,49(2):441-455.DENG K W,CHEN H X.Hybrid optimization algorithm based on differentical evolution and RBF response surface[J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):441-455(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700