用户名: 密码: 验证码:
广义辐射传热有热漏换热过程■耗散最小化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Entransy Dissipation Minimization for Heat Exchange Processes with Heat Leakage and Generalized Radiative Heat Transfer Law
  • 作者:夏少军 ; 陈林 ; 孙丰瑞
  • 英文作者:XIA Shao-Jun;CHEN Lin-Gen;SUN Feng-Rui;Institute of Thermal Science and Power Engineering,Wuhan Institute of Technology;School of Mechanical & Electrical Engineering,Wuhan Institute of Technology;College of Power Engineering,Naval University of Engineering;
  • 关键词:换热过程 ; 热漏 ; 广义辐射传热规律 ; ■耗散最小 ; 有限时间热力学
  • 英文关键词:heat exchange process;;heat leakage;;generalized radiative heat transfer law;;entransy dissipation minimization;;finite time thermodynamics
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:武汉工程大学热科学与动力工程研究室;武汉工程大学机电工程学院;海军工程大学动力工程学院;
  • 出版日期:2019-06-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目资助(No.51576207,No.51606218);; 海军工程大学自主立项科研项目(No.20161504)
  • 语种:中文;
  • 页:GCRB201906022
  • 页数:12
  • CN:06
  • ISSN:11-2091/O4
  • 分类号:148-159
摘要
换热器性能的提高有利于提高能源利用效率。本文研究了广义辐射传热规律[q∝△(T~n)]下与外界环境间存在热漏的换热过程,应用平均最优控制理论导出了过程■耗散最小时的最优性条件。基于普适的优化结果,进一步得到了牛顿(n=1)、线性唯象(n=-1)、辐射(n=4)以及一类混合传热规律下的特例结果,并与热流率和热流体温度分别为定值的常规传热策略进行了比较。给出了数值算例,揭示了传热量和热漏对换热器最小■耗散及相应热、冷流体温度最优分布规律的定性与定量影响规律,明晰了有热漏条件下热流率和热流体温度分别为定值时的两种传热策略的优劣性。本文结果可用于指导实际换热装置的优化设计。
        The improvement of the performance of the heat exchanger is beneficial The heat transfer process with heat leakage and generalized radiative heat transfer law [q ∝ △(T~n)] is investigated in this paper, and the optimality condition for the minimum entransy dissipation of the process is derived by applying averaged optimal control theory. On the basis of the general optimization result, the results for four special cases of Newtonian(n = 1), linear phenomenological(n =-1),radiative(n = 4), and mixed heat transfer laws are further obtained. The optimal paths are also compared with the common strategies of constant heat flux rate and constant hot fluid temperature operation. Numerical examples are presented, and influences of both the amount of heat transferred and the heat leakage on the optimization results are also analyzed. The obtained results in this paper could provide some theoretical guidelines for optimal design and operation of real heat transfer devices.
引文
[1] Andresen B, Berry R S, Nitzan A, et al. Thermodynamics in Finite Time. I. The Step-Carnot Cycle[J]. Physics Review A, 1977, 15(5):2086-2093
    [2] CHEN Lingen, WU Chi, SUN Fengrui. Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems[J]. Journal of NonEquilibrium Thermodynamics, 1999, 22(4):327-359
    [3] Hoffman K H, Burzler J M, Fischer A, et al. Optimal Process Paths for Endoreversible Systems[J]. Journal of Non-Equilibrium Thermodynamics, 2003, 28(3):233-268
    [4] Andresen B. Current Trends in Finite-Time Thermodynamics[J]. Angewandte Chemie International Edition,2011, 50(12):2690-2704
    [5]林国星,陈金灿.多种能量转换系统的性能优化与参数设计的研究[J].厦门大学学报(自然科学版),2011,50(2):227-238LIN Guoxing, Chen Jincan. Investigation on the Optimum Performance and Parametric Design of a Variety of Energy Conversion Systems[J]. Journal of Xiamen University(Natural Science), 2011, 50(2):227-238
    [6] Feidt M. Thermodynamics of Energy Systems and Processes:A Review and Perspectives[J]. Journal Applied Fluid Mechanics, 2012, 5(2):85-98
    [7] QIN Xiaoyong, CHEN Lingen, GE Yanlin, et al. Finite Time Thermodynamic Studies on Absorption Thermodynamic Cycles:A State of the Arts Review[J]. Arabian Journal for Science and Engineering, 2013, 38(3):405-419
    [8] CHEN Lingen, MENG Fankai, SUN Fengrui. Thermodynamic Analyses and Optimization for Thermoelectric Devices:The State of the Arts[J]. Science China:Technological Sciences, 2016, 59(3):442-455
    [9] Sieniutycz S, Tsirlin A M. Finding Limiting Possibilities of Thermodynamic Systems by Optimization[J]. Philosophical Transactions of the Royal Society A, 2017, 375(2088):20160219
    [10] Bejan A. Entropy Generation Minimization:The New Thermodynamics of Finite-Size Devices and Finite-Time Processes[J]. Journal of Applied Physics, 1996, 79(3):1191-1218
    [11] Bejan A. Entropy Generation Minimization, Exergy Analysis, and the Constructal Law[J]. Arabian Journal for Science and Engineering, 2013, 38(2):329-340
    [12] WU Chih, CHEN Lingen, CHEN Jincan. Recent Advances in Finite Time Thermodynamics[M]. New York:Nova Science Publishers, 1999
    [13] CHEN Lingen, SUN Fengrui. Advances in Finite Time Thermodynamics:Analysis and Optimization[M]. New York:Nova Science Publishers, 2004
    [14]陈林根.不可逆过程和循环的有限时间热力学分析[M].北京:高等教育出版社,2005CHEN Lingen. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles[M]. Beijing:Higher Education Press, 2005
    [15] Sieniutycz S. Thermodynamic Approaches in Engineering Systems[M]. Oxford:Elsevier, 2016
    [16]陈林根,夏少军.不可逆过程的广义热力学动态优化[M].北京:科学出版社,2017CHEN Lingen, XIA Shaojun. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes[M]. Beijing:Science Press, 2017
    [17]陈林根,夏少军.不可逆循环的广义热力学动态优化[M].北京:科学出版社,2018CHEN Lingen, XIA Shaojun. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles[M].Beijing:Science Press, 2018
    [18] Badescu V. Optimal Control in Thermal Engineering[M].New York:Springer, 2017
    [19]毕月红,陈林根.空气热泵性能有限时间热力学优化[M].北京:科学出版社,2017BI Yuehong, CHEN Lingen. Finite Time Thermodynamic Optimization for Air Heat Pumps[M]. Beijing:Science Press. 2017
    [20] Bejan A. The Concept of Irreversibility in Heat Exchanger Design:Counter-Flow Heat Exchangers for Gas-to-gas Applications[J]. Transaction of ASME:Journal of Heat Transfer, 1977, 99(3):374-380
    [21] Bejan A. General Criterion for Rating Heat-Exchanger Performance[J]. International Journal of Heat and Mass Transfer, 1978, 21:655-658
    [22] Bejan A. Second Law Analysis in Heat Transfer[J]. Energy, 1980, 5(8/9):720-732
    [23] Bejan A. Second Law Analysis in Heat Transfer and Thermal Design[J]. Advances in Heat Transfer, 1982, 15:1-58
    [24]徐志明,扬善让,陈钟颀.换热器最优参数的变分解法[J].化工学报,1995, 46(1):75-80XU Zhiming, YANG Shanrang, CHEN Zhongqi. Variational Solution of Optimum Parameter Distributions in Heat Exchanger[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(1):75-80
    [25] Hesselgreaves J E. Rationalisation of Second Law Analysis of Heat Exchanger[J]. International Journal of Heat and Mass Transfer, 2000, 43(22):4189-4204
    [26] GUO Zengyuan, LI Zhixin, ZHOU Senquan. Principle of Uniformity of Temperature Difference Field in Heat Ex-changer[J]. Science in China Series E:Technological Sciences, 1996, 39(1):68-75
    [27] GUO Zengyuan, ZHOU Senquan, LI Zhixin, et al. Theoretical Analysis and Experimental Confirmation of the Uniformity Principle of Temperature Difference Field in Heat Exchanger[J]. International Journal of Heat and Mass Transfer, 2002, 45(10):2119-2127
    [28] Shah R K, Skiepko T. Entropy Generation Extremum and Their Relationship with Heat Exchanger EffectivenessNumber of Transfer Unit Behavior for Complex Flow Arrangements[J]. Transaction of ASME:Journal of Heat Transfer, 2004, 126(6):994-1002
    [29] Linetskii S B, Tsirlin A M. Evaluating Thermodynamic Efficiency and Optimizing Heat Exchangers[J]. Thermal Engineering, 1988, 35(10):593-597
    [30] Andresen B, Gordon J M. Optimal Heating and Cooling Strategies for Heat Exchanger Design[J]. Journal of Applied Physics, 1992, 71(1):76-80
    [31] Badescu V. Optimal Strategies for Steady State Heat Exchanger Operation[J]. Journal of Physics D:Applied Physics, 2004, 37(16):2298-2304
    [32] Nummedal L, Kjelstrup S. Equipartition of Forces as a Lower Bound on the Entropy Production in Heat Exchange[J]. International Journal of Heat and Mass Transfer, 2001, 44(15):2827-2833
    [33] Johannessen E, Nummedal L, Kjelstrup S. Minimizing the Entropy Production in Heat Exchange[J]. International Journal of Heat and Mass Transfer, 2002, 45(13):2649-2854
    [34] Balkan F. Comparison of Entropy Minimization Principles in Heat Exchange and a Short-Cut Principle:EoTD[J].International Journal of Energy Research, 2003, 27(11):1003-1014
    [35] Andresen B, Gordon J M. Optimal Paths for Minimizing Entropy Generation in a Common Class of Finite Time Heating and Cooling Processes[J]. International Journal of Heat&Fluid Flow, 1992, 13(3):294-299
    [36] Badescu V. Optimal Paths for Minimizing Lost Available Work During Usual Heat Transfer Processes[J]. Journal of Non-Equilibrium Thermodynamics, 2004, 29(1):53-73
    [37] CHEN Lingen, XIA Shaojun, SUN Fengrui. Optimal Paths for Minimizing Entropy Generation During Heat Transfer Processes with a Generalized Heat Transfer Law[J]. Journal of Applied Physics, 2009, 105(4):44907.
    [38] XIA Shaojun, CHEN Lingen, SUN Fengrui. Optimal Paths for Minimizing Lost Available Work During Heat Transfer Processes with Complex Heat Transfer law[J].Brazilian Journal of Physics, 2009, 39(1):98-105
    [39] GUO Zengyuan, ZHU Hongye, LIANG Xingang.Entransy—A Physical Quantity Describing Heat Transfer Ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13-14):2545-2556
    [40]过增元,梁新刚,朱宏晔.火积—描述物体传递热量能力的物理量[J].自然科学进展,2006, 16(10):1288-1296GUO Zengyuan, LIANG Xingang, ZHU Hongye.Entransy—A Physical Quantity Describing Heat Transfer Ability[J]. Progress in Natural Science, 2006, 16(10):1288-1296
    [41]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用[J].科学通报,2003, 48(1):21-25GUO Zengyuan, CHENG Xinggang, XIA Zaizhong. Least Dissipation Principle of Heat Transport Potential Capacity and Its Application in Heat Conduction Optimization.Chinese Science Bulletin, 2003, 48(4):406-410
    [42]李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010LI Zhixing, GUO Zengyuan. Field Synergy Theory for Convective Heat Transfer Optimization[M]. Beijing:Science Press, 2010
    [43]陈林根.火积理论及其应用的进展[J].科学通报,2012,57(30):2815-2835CHEN Lingen. Progress in Entransy Theory and Its Applications[J]. Chinese Science Bulletin, 2012, 57(34):4404-4426
    [44]付荣桓,许云超,陈群.制冷空调系统性能优化的火积耗散热阻法研究进展[J].科学通报,2015, 60(34):3367-3376FU Rongheng, XU Yunchao, CHEN Qun. Progress on the Entransy-Based Thermal Resistance Method for Optimization of Refrigeration and Air-Conditioning Systems[J]. Chinese Science Bulltin, 2015, 60(34):3367-3376
    [45] CHEN Lingen. Progress in Optimization of Mass Transfer Processes Based on Mass Entransy Dissipation Extremum Principle[J]. Science China:Technological Sciences, 2015,57(12):2305-2327
    [46]陈林根,冯辉君.流动和传热传质过程的多目标构形优化[M].北京:科学出版社,2016CHEN Lingen, FENG Huijun. Multi-Objective Constructal Optimization for Flow and Heat and Mass Transfer Processes[M]. Beijing:Science Press, 2016
    [47]夏力,冯园丽,项曙光.火积理论及其在化工过程节能中的应用进展[J].化工学报,2016, 67(12):4915-4921XIA Li, FENG Yuanli, XIANG Shuguang. Progress and Application of Entransy Theory in Energy Saving of Chemical Processes[J]. Journal of Chemical Industry and Engineering(China), 2016, 67(12):4915-4921
    [48]王焕光,吴迪,饶中浩.孤立系内热传导过程火积耗散的解析解[J].物理学报,2015, 64(24):244401WANG Huanguang, WU Di, RAO Zhonghao. Analytical Solution of the Entransy Dissipation of Heat Conduction Process in Isolated System[J]. Acta Physica Sinica, 2015,64(24):244401
    [49] HAO Junhong, CHEN Qun, HU Kang. Porosity Distribution Optimization of Insulation Materials by the Variational Method[J]. International Journal of Heat and Mass Transfer, 2016, 92:1-7
    [50] HUA Yunchao, GUO Zengyuan. The Least Action Principle for Heat Conduction and Its Optimization Application[J]. International Journal of Heat and Mass Transfer, 2017,105:697-703
    [51] GE Ya, LIU Zhichun, LIU Wei, et al. Active Optimization Design Theory and Method for Heat Transfer Unit and its Application on Shape Design of Cylinder in Convective Heat Transfer[J]. International Journal of Heat and Mass Transfer, 2015, 90:702-709
    [52] ZHOU Bin, CHENG Xuetao, LIANG Xingang. Comparison of Different Entransy Flow Definitions and Entropy Generation in Thermal Radiation Optimization[J]. Chinese Physics B, 2013, 22():84401
    [53]夏少军,陈林根,孙丰瑞.液一固相变过程火积耗散最小化[J].中国科学:技术科学,2010, 40(12):1521-1529XIA Shaojun, CHEN Lingen, SUN Fengrui. Entransy Dissipation Minimization for Liquid-Solid Phase Change Processes[J]. Science China:Technological Sciences, 2010,53(4):960-968
    [54] CHENG Xuetao, LIANG Xingang. A Comparison Between the Entropy Generation in Terms of Thermal Conductance and Generalized Thermal Resistance in Heat Exchanger Analyses[J]. International Journal of Heat and Mass Transfer, 2014, 76:263-267
    [55]夏少军,陈林根,孙丰瑞.一类单向等温传质过程积耗散最小化[J].中国科学:技术科学,2011,41(4):515-524XIA Shaojun, CHEN Lingen, SUN Fengrui. Entransy Dissipation Minimization for a Class of One-Way Isothermal Mass Transfer Processes[J]. Science China:Technological Sciences, 2010, 54(2):352-361
    [56] XIA Shaojun, CHEN Lingen, SUN Fengrui. Entransy Dissipation Minimization for One-Way Isothermal Mass Transfer Processes with a Generalized Mass Transfer Law[J]. Scientia Iranica,Transaction C-Chemical Engineering, 2012, 19(6):1616-1625
    [57]夏少军,陈林根,孙丰瑞.扩散传质定律结晶过程火积耗散最小化[J].机械工程学报,2013, 49(24):175-182XIA Shaojun, CHEN Lingen, SUN Fengrui. Entransy Dissipation Minimization for Isothermal Crystallization Process with Diffusive Mass Transfer Law[J]. Journal of Mechanical Engineering, 2013, 49(24):175-182
    [58] XIA Shaojun, CHEN Lingen, SUN Fengrui. Optimization of Equimolar Reverse Constant-Temperature MassDiffusion Process for Minimum Entransy Dissipation[J].Science China:Technological Sciences, 2016, 59(12):1867-1873
    [59]夏少军,陈林根,戈延林,等.等温节流过程积耗散最小化[J].物理学报,2013, 62(18):180202XIA Shaojun, CHEN Lingen, GE Yanlin, et al. Entransy Dissiaption Minimization for Isothermal Throttling Process[J]. Acta Physica Sinica, 2013, 62(18):180202
    [60] ZHENG Zhangjing, HE Yan, HE Yalin. Optimization for a Thermocheimical Energy Storage-Reactor Based on Entransy Dissipation Minimization[J]. Energy Procedia,2015, 75:1791-1796
    [61] HU Peng, ZHANG Gaowei, CHEN Longxiang, et al. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems[J]. Energies, 2017, 10(2):198.
    [62] CHENG Xurtao, ZHAO Jianming, LIANG Xingang. Discussion on the Extensions of the Entransy Theory[J]. Science China:Technological Sciences, 2017, 60(3):363-373
    [63]宋伟明,孟继安,梁新刚,等.一维换热器中温差场均匀性原则的证明[J].化工学报,2008, 59(10):2460-2464SONG Weiming, MENG Ji'an, LIANG Xinggang, et al.Demonstration of Uniformity Principle of Temperature Difference Field for One-Dimensional Heat Exchangers[J].Journal of Chemical Industry and Engineering(China),2008, 59(10):2460-2464
    [64]过增元,李志信,周森泉,等.换热器中的温差场均匀性原则[J].中国科学E辑:技术科学,1996, 26(10):25-31GUO Zengyuan, LI Zhixin, ZHOU Senquan, et al. Principle of Uniformity of Temperature Difference Field in Heat Exchanger. Science in China(Series E), 1996, 26(10):25-31
    [65]过增元,魏澍,程新广.换热器强化的场协同原则[J].科学通报,2003, 48(22):2324-2327GUO Zengyuan, WEI, Shu, CHENG Xinguang. The Principle of Field Synergy for the Enhancement of Heat Exchanger[J]. Chinese Science Bulltin, 2003, 48(22):2324-2327
    [66]夏少军,陈林根,孙丰瑞.换热器煨耗散最小优化[J].科学通报,2009, 54(15):2240-2246. 90XIA Shaojun, CHEN Lingen, SUN Fengrui. Optimization for Entransy Dissipation Minimization in Heat Exchanger[J]. Chinese Science Bulletin, 2009, 54(15):3587-3595
    [67] GUO Jiangfeng, XU Mingtian, CHENG Lin. Principle of Equipartition of Entransy Dissipation for Heat Exchanger Design[J]. Science China:Technological Sciences, 2010,53(5):1309-1314
    [68] Guo Jiangfeng, XU Mingtian, CHENG Lin. The Entransy Dissipation Minimization Principle Under Given Heat Duty and Heat Transfer Area Conditions.[J]. Chinese Science Bulletin, 2011, 56(19):2071-2076
    [69] XIA Shaojun, CHEN Lingen, SUN Fengrui. Optimal Paths for Minimizing Entransy Dissipation During Heat Transfer Processes with Generalized Radiative heat Transfer Law[J]. Applied Mathematical Modeling, 2010, 34(8):2242-2255
    [70] XIA Shaojun, CHEN Lingen, XIE Zhihui, et al. Entransy Dissipation Minimization for Generalized Heat Exchange Process[J]. Science China:Technological Sciences, 2016,59(10):1507-1516
    [71]夏少军,陈林根,戈延林,等.热漏对换热过程耗散最小化的影响[J].物理学报,2013, 63(2):020505XIA Shaojun, CHEN Lingen, GE Yanlin, et al. Influence of Heat Leakage on Entransy Dissipation Minimization of heat Exchanger[J]. Acta Physica Sinica, 2013, 63(2):020505
    [72]夏少军,陈林根,戈延林,等.存在热漏的换热过程熵产生最小化[J].工程热物理学报,2013, 34(6):1008-1011XIA Shaojun, CHEN Lingen, GE Yanlin, et al. Entropy Generation Minimization for Heat Transfer Process with Heat Leakage[J].Journal of Engineering Thermophysics,2013, 34(6):1008-1011
    [73] Tsirlin A M. Problems and Methods of Averaged Optimization[J], Proc Steklov Ins Math, 2008, 261(1):270-286
    [74] Tsirlin A M, Mironova V A, Amelkin S A, et al. FiniteTime Thermodynamics:Conditions of Minimal Dissipation for Thermodynamic Process with Given Rate[J].Physics Review E, 1998, 58(1):215-223
    [75] Tsirlin A M, Kazakov V A. Maximal Work Problem in Finite-Time Thermodynamics[J]. Physics Review E,2000,62(1):307-316
    [76] Tsirlin A M. Irreversible Estimates of Limiting Possibilities of Thermodynamic and Microeconomic systems[M].Moscow:Nauka, 2003
    [77] Tsirlin A M. Optimization for Thermodynamic and Economic Systems[M]. Moscow:Nauka, 2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700