用户名: 密码: 验证码:
预应力钢筒混凝土管内壁复式碳纤维加固试验与计算分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Laboratory testing and calculation analysis of reinforcement for prestressed concrete cylinder pipe with compound carbon fiber
  • 作者:董晓农 ; 李萌 ; 孙志恒 ; 马宇
  • 英文作者:DONG Xiaonong;LI Meng;SUN Zhiheng;MA Yu;China Institute of Water Resources and Hydropower Research,Beijing IWHR-KHL Co.,Ltd.;
  • 关键词:预应力钢筒混凝土管(PCCP) ; 复式碳纤维加固 ; 模型试验 ; 计算分析
  • 英文关键词:prestressed concrete cylinder pipe(PCCP);;compound carbon fiber reinforcement;;model test;;mechanics computation
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:中国水利水电科学研究院北京中水科海利工程技术有限公司;
  • 出版日期:2019-06-15
  • 出版单位:水利学报
  • 年:2019
  • 期:v.50;No.513
  • 基金:国家科技攻关计划项目(2016YFC0401609)
  • 语种:中文;
  • 页:SLXB201906015
  • 页数:7
  • CN:06
  • ISSN:11-1882/TV
  • 分类号:124-130
摘要
碳纤维加固预应力钢筒混凝土管(PCCP)具有非开挖、工期短、对周边环境影响小的特点。但是,由于碳纤维与混凝土的极限拉应变相差近百倍,传统碳纤维加固PCCP技术无法有效发挥碳纤维的应力水平。本文提出复式碳纤维加固PCCP技术,即在碳纤维与PCCP之间增设自主研发的高压缩弹性垫层,利用垫层的压缩性为碳纤维变形提供空间,显著提升碳纤维的环向应变水平。为了验证复式碳纤维的加固效果,采用直径为0.75 m的钢筒进行模型试验,试验结果表明,当内水压力为1.0 MPa时,复式碳纤维加固技术较传统碳纤维加固技术中碳纤维环向微应变提升20倍以上,被加固结构的微应变降低40%以上。基于拉梅公式的力学模型计算结果与试验结果基本一致,随着垫层厚度或碳纤维层数的增加,钢筒的环向微应变降低,但降低的速度逐渐减小。该技术利用了碳纤维高强和高模量的特性,实现了碳纤维与PCCP共同承受内水压力的效果。
        Carbon fiber reinforcement technology for Prestressed Concrete Cylinder Pipe(PCCP) has the characteristics of trenchless,short construction period and little impact on surrounding environment. Because of the difference of ultimate tensile strain between carbon fiber and concrete by nearly one hundred times,the existing carbon fiber reinforcement technology for PCCP cannot effectively play the stress level of carbon fiber. In this paper,a new solution of the compound carbon fiber on PCCP is proposed,which is referred to add a self-developed high compressible and elastic cushion between the carbon fiber and PCCP.The circumferential strain level of carbon fiber can be improved remarkably by using the compressible amount of cushion to provide space for the deformation of carbon fiber. In order to verify the effect of carbon fiber reinforcement structure, model tests were carried out on a steel cylinder with a diameter of0.75 m. The laboratory testing results show that the circular strain of carbon fiber in compound reinforcement structure is 20 times higher than that in conventional reinforcement structure,and the strain of reinforced structure is reduced by more than 40% when the internal water pressure is 1.0 MPa,which is consistent with the calculated results of the mechanical model based on Lame′s formula. With the increase of cushion thickness or layers of carbon fiber,the circular micro-strain of steel cylinder decreases,but this decreasing speed slows down gradually. This technology takes advantage of the characteristics of high tensile strength and high elastic modulus of carbon fiber,achieves the effect that carbon fiber and PCCP jointly bear the internal water pressure.
引文
[1]张树凯.预应力钢筒混凝土管发展回顾与前景展望[J].混凝土与水泥制品,2007(2):25-28.
    [2] ANDREW E R,DAN E. Failure of Prestressed Concrete Cylinder Pipe[R]. West Quincy Avenue,Denver:Awwa Research Foundation,2008.
    [3]窦铁生,燕家琪.预应力钢筒混凝土管(PCCP)的破坏模式及原因分析[J].混凝土与水泥制品,2014(1):29-33.
    [4]胡少伟,沈捷,王东黎,等.超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究[J].水利学报,2010,41(7):876-882.
    [5]窦铁生,王荣鲁,王东黎,等.预应力钢筒混凝土管弯矩重分布问题的探讨[J].水利学报,2011,42(1):113-119.
    [6]窦铁生,程冰清,胡赫,等.预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J].水利学报,2017,48(12):1438-1446.
    [7]窦铁生,程冰清,胡赫,等.预应力钢筒混凝土管结构变形规律的原型试验研究Ⅱ:外压[J].水利学报,2018,49(2):207-215.
    [8]白耀华,刘洋,严亦洲,等.基于流固耦合计算的PCCP管爆管原因分析[J].中国农村水利水电,2011(5):53-55,59.
    [9]张海丰,董顺,周维,等.预应力钢筒混凝土管(PCCP)结构修复更新技术介绍[J].给水排水,2017(8):104-108.
    [10] ENGINDENIZ M,NARDINI P D,OJDROVIC R P,et al. CFRP Repair and Strengthening of PCCP for Thrust Restraint[C]//Pipelines 2012:Innovations in Design,Construction,Operations,and Maintenance,Doing More with Less. Florida:ASCE,2012.
    [11] ENGINDENIZ M,ZARGHAMEE M S. Experimental Basis of CFRP Renewal of PCCP[C]//Pipelines 2014:From Underground to the Forefront of Innovation and Sustainability. Oregon:ASCE,2014.
    [12] ZARGHAMEE M S,ENGINDENIZ M,ERBAY O O,et al. Repair of Concrete Pressure Pipes with CFRP Composites[C]//Structures Congress 2010. Florida:ASCE,2010.
    [13] ZARGHAMEE M S,ENGINDENIZ M. CFRP Renewal of PCCP:An Overview[C]//Pipelines 2014:From Underground to the Forefront of Innovation and Sustainability. Oregon:ASCE,2014.
    [14] ZARGHAMEE M S,ENGINDENIZ M. Watertightness of CFRP Liners for Distressed Pipes[C]//Pipelines 2015:Recent Advances in Underground Pipeline Engineering and Construction. Maryland:ASCE,2015.
    [15] WANG N Y,ZARGHAMEE M S. LRFD Approach to CFRP Renewal of Prestressed Concrete Cylinder Pipes[C]//Pipelines 2012:Innovations in Design,Construction,Operations,and Maintenance,Doing More with Less. Florida:ASCE,2012.
    [16] LEE Y,LEE E T. Retrofit design of damaged prestressed concrete cylinder pipes[J]. International Journal of Concrete Structures and Materials,2013,7(4):265-271.
    [17] LEE Y,LEE E T. Analysis of prestressed concrete cylinder pipes with fiber reinforced polymer[J]. KSCE Journal of Civil Engineering,2015,19(3):682-688.
    [18]窦铁生,程冰清,胡赫,等. CFRP修复PCCP的内水压试验[J].混凝土与水泥制品,2017(12):35-40.
    [19]胡赫. CFRP修复预应力钢筒混凝土管(PCCP)内压试验与数值分析[D].北京:中国水利水电科学研究院,2017.
    [20] EHSANI M. Introducing a New Honeycomb-FRP Pipe[C]//Pipelines 2012:Innovations in Design,Construction,Operations,and Maintenance,Doing More with Less. Florida:ASCE,2012.
    [21] ALKHRDAJI T,ROCCA S,GALATI N. PCCP Rehabilitation using Advanced Hybrid FRP Composite Liner[C]//Pipelines 2013:Pipelines and Trenchless Construction and Renewals—A Global Perspective. Texas:ASCE,2013.
    [22]董晓农,孙志恒.弹性垫层对碳纤维加固PCCP的影响分析[C]//水工混凝土建筑物检测与修补加固技术新进展.北京:中国水利水电出版社,2017.
    [23]孙志恒,董晓农,郝巨涛,等. PCCP内壁复式碳纤维加固技术及应力计算分析[J].水利水电技术,2018(7):88-93.
    [24]徐秉业.弹塑性力学及其应用[M].北京:机械工业出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700