用户名: 密码: 验证码:
坐标矩阵奇异值分解下的视觉导航点对应关系计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Visual point correspondence determination method based on SVD of coordinate matrix
  • 作者:孙永荣 ; 黄斌 ; 曾庆化 ; 赵伟
  • 英文作者:SUN Yongrong;HUANG Bin;ZENG Qinghua;ZHAO Wei;Navigation Research Center, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:点对应关系 ; 视觉导航 ; 奇异值分解 ; 特征匹配
  • 英文关键词:point correspondence;;vision navigation;;singular value decomposition;;feature matching
  • 中文刊名:ZGXJ
  • 英文刊名:Journal of Chinese Inertial Technology
  • 机构:南京航空航天大学自动化学院导航研究中心;
  • 出版日期:2019-04-15
  • 出版单位:中国惯性技术学报
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金(61533008)
  • 语种:中文;
  • 页:ZGXJ201902010
  • 页数:7
  • CN:02
  • ISSN:12-1222/O3
  • 分类号:71-76+85
摘要
为解决视觉导航中空间点与图像点之间的映射问题,提出一种坐标矩阵奇异值分解下的点对应关系计算方法。首先,针对一般几何分布下的空间点配置情况。然后,建立了视觉导航点对应关系计算模型,以矩阵奇异值分解为工具,推导了特征点集坐标矩阵等式,构建了与旋转、尺度以及平移无关的不变特征,并计算特征点对应关系。所提出的方法避免了传统方法中特征点对应关系的指数级搜索或者在搜索特征点对应关系时需要人工设计较为复杂的匹配策略。试验结果表明,所提出的方法能够在极少次数搜索下准确获得点对应关系。
        In order to solve the mapping problem between spatial points and image points in vision navigation, a method for calculating the point correspondence based on singular value decomposition of coordinate matrix is proposed. The coordinate matrix equation of feature point set is deduced, and the invariant features independent of rotation, scale and translation are constructed, and then the point correspondence for spatial points under general geometric distribution is calculated. The proposed method avoids both the exponential search of feature point correspondence in traditional methods and the need to design more complex matching strategies manually when searching for feature point correspondence. Experimental results show that the proposed method can achieve correct solution under very few searching times.
引文
[1] Thomas P, Bhandari U, Bullock S, et al. Advances in air to air refueling[J]. Progress in Aerospace Sciences, 2014,71:14-35.
    [2] Wu Y, Gao Y, Lin J, et al. Low-cost, high-performance monocular vision system for air bearing table attitude determination[J]. Journal of Spacecraft and Rockets,2014, 51(1):66-75.
    [3]程传奇,郝向阳,李建胜,等.基于非线性优化的单目视觉/惯性组合导航算法[J].中国惯性技术学报, 2017,25(5):643-649.Cheng C, Hao X, Li J, et al. Monocular visual inertial navigation based on nonlinear optimization[J]. Journal of Chinese Inertial Technology, 2017, 25(5):643-649.
    [4] Zhao Y, Wang X, Li Q, et al. A high-accuracy autonomous navigation scheme for the Mars rover[J]. Acta Astronautica, 2018, 154:18-32.
    [5]黄楠楠,刘贵喜,张音哲,等.无人机视觉导航算[J].红外与激光工程, 2016, 45(7):1-9.Huang N, Liu G, Zhang Y, et al. Unmanned aerial vehicle vision navigation algorithm[J]. Infrared and Laser Engineering, 2016, 45(7):1-9.
    [6] Kong X, Wu W, Zhang L, et al. Tightly-coupled stereo visual-inertial navigation using point and line features[J].Sensors, 2015, 15(6):12816-12833.
    [7] Lu Y, Song D. Visual navigation using heterogeneous landmarks and unsupervised geometric constraints[J].IEEE Transactions on Robotics, 2015, 31(3):736-749.
    [8] He Y, Zhao J, Guo Y, et al. PL-VIO:Tightly-coupled monocular visual-inertial odometry using point and line features[J]. Sensors, 2018, 18(4):1-25.
    [9] Li S, Lee D. Fast visual odometry using intensity-assisted iterative closest point[J]. IEEE Robotics and Automation Letters, 2016, 1(2):992-999.
    [10]杨成顺,杨忠,薛八阳.基于人工标志的无人机视觉导航方法[J].应用科技, 2015, 42(5):34-38.Yang C, Yang Z, Xue B. An approach of vision navigation of UAV based on artificial marks[J]. Applied Science and Technology, 2015, 42(5):34-38.
    [11] Huang L, Song J, Zhang C, et al. Design and performance analysis of landmark-based INS/Vision Navigation System for UAV[J]. Optik, 2018, 172(11):484-493.
    [12]张洋,王新龙.一种地标点修正的高精度双目视觉导航方法[J].北京航空航天大学学报, 2014, 40(9):1305-1311.Zhang Y, Wang X. Landmark fixed high-precision binocular visual navigation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1305-1311.
    [13] Hua B, Wu Y, Shao Z, et al. A new feature points reconstruction method in spacecraft vision navigation[J].Mathematical Problems in Engineering, 2015:1-6.
    [14]吴腾飞,周鑫,袁锁中.无人机软式自主空中加油视觉导航方法[J].测控技术, 2015, 34(9):17-20.Wu T, Zhou X, Yuan S. Vision-based navigation method for UAV autonomous probe and drogue aerial refueling[J]. Measurement&Control Technology, 2015, 34(9):17-20.
    [15]陈诚,王小刚,秦武韬,等.基于鲁棒滤波的无人机着陆相对导航方法[J].中国惯性技术学报, 2017, 25(3):415-420.Chen C, Wang X, Qin W, et al. Unmanned aerial vehicle landing navigation algorithm based on robust filter[J].Journal of Chinese Inertial Technology, 2017, 25(3):415-420.
    [16] Heo S, Jung J H, Park C G. Consistent EKF-based visualinertial navigation using points and lines[J]. IEEE Sensors Journal, 2018, 18:7638-7649.
    [17] Meng Y, Wang W, Han H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology, 2019, 85:474-480.
    [18]徐晓苏,代维,杨博,等.室内环境下基于图优化的视觉惯性SLAM方法[J].中国惯性技术学报, 2017,25(3):313-319.Xu X, Dai W, Yang B, et al. Visual-aid inertial SLAM method based on graph optimization in indoor[J]. Journal of Chinese Inertial Technology, 2017, 25(3):313-319.
    [19]蔡迎波,李德彪.基于单目视觉的AUV水下定位方法[J].中国惯性技术学报, 2015, 23(4):489-492.Cai Y, Li D. AUV underwater positioning method based on monocular-vision[J]. Journal of Chinese Inertial Technology, 2015, 23(4):489-492.
    [20]孙永荣,黄斌,杨博文,等.多视图场景确定下的空间点位置视觉标定方法[J].南京航空航天大学学报,2015, 47(3):343-347.Sun Y, Huang B, Yang B, et al. Vision calibration method of spatial point position under multi-view scene determination[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2015, 47(3):343-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700