用户名: 密码: 验证码:
变换催化剂的密度泛函理论研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress indensity functional theory study of shift catalysts
  • 作者:史立杰 ; 孙玉琢 ; 李晨佳 ; 张永泽 ; 张金舵 ; 冯璐瑶 ; 刘鹏翔 ; 常俊石
  • 英文作者:Shi Lijie;Sun Yuzhuo;Li Chenjia;Zhang Yongze;Zhang Jinduo;Feng Luyao;Liu Pengxiang;Chang Junshi;Hebei University of Technology;Beijing Technology R & D Center,Xindi Energy Engineering Technology Co.,Ltd.;
  • 关键词:催化剂工程 ; 变换催化剂 ; 合成气 ; 反应机理 ; 密度泛函理论 ; 计算化学
  • 英文关键词:catalyst engineering;;shift catalyst;;syngas;;reaction mechanism;;density functional theory;;computational chemistry
  • 中文刊名:GYCH
  • 英文刊名:Industrial Catalysis
  • 机构:河北工业大学;新地能源工程技术有限公司北京技术研发中心;
  • 出版日期:2019-05-15
  • 出版单位:工业催化
  • 年:2019
  • 期:v.27;No.248
  • 语种:中文;
  • 页:GYCH201905003
  • 页数:5
  • CN:05
  • ISSN:61-1233/TQ
  • 分类号:17-21
摘要
综述近年来采用密度泛函理论开发水煤气变换催化剂的研究进展,重点讨论采用密度泛函理论模拟催化吸附、反应机理、晶面择优、催化剂掺杂结构等方面的研究,为变换催化剂的设计开发提供理论依据。密度泛函理论如今已经成为量子化学领域应用最为广泛的计算方法,是今后开发、改良催化剂的重要手段。
        The research progress of developing water-gas shift catalysts by density functional theory in recent years is reviewed. Simulated catalytic adsorption,reaction mechanism,crystal plane selection and catalyst doping structure using density functional theory is discussed to provide theoretical basis for design and development of shift catalyst. Density functional theory is now the most widely used calculation method in quantum chemistry,and is an important means for developing and improving catalysts in the future.
引文
[1]Rhodes C,Hutchings G J,Ward A M. Water gas shift reaction:finding the mechanicalboundary[J]. Catalysis Today,1995,23(1):43-58.
    [2]Emmett P H,in Drauglis E,Jaffee R I. The physical basis for heterogeneous catalysis[M]. New York:Plenum Press,1974:3-34.
    [3]Bond GC. Heterogeneous catalysis[M]. 2nd. Oxford:Clarend on Press,1986:94-96.
    [4]杜虹波,闫志国,殷霞,等.密度泛函理论在过渡金属氧化物催化剂中的应用[J].武汉工程大学学报,2018,40(4):366-370.Du Hongbo,Yan Zhiguo,Yin Xia,et al. Application of DFT+U method in transition metal oxides catalyst[J]. Journal of Wuhan Institute of Technology,2018,40(4):366-370.
    [5]Hilaire S,Wang X,Luo T,et al. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts[J]. Applied Catalysis A:General,2001,215(1/2):271-278.
    [6]Jacobs G,Williams L,Graham U,et al. low temperature water-gas shift in situ drifts-reaction study of ceria surface area on the evolution of formates on Pt/Ce O2fuel processing catalysts for fuel cell applications[J]. Applied Catalysis A:General,2003,252(1):107-118.
    [7]Kalamaras C M,Americanou S,Efstathiou A M.“Redox”vs“associative formate with—OH group regeneration”WGS reaction mechanism on Pt/Ce O2:effect of platinum particle size[J]. Journal of Catalysis,2011,279(2):287-300.
    [8]Cao Z,Guo L,Liu N,et al. Density Functional study of catalytic activity of Cu12TM for water gas shift reaction[J].Catalysis Surveys from Asia,2016,20(2):63-73.
    [9]Hilaire S,Wang X,Luo T,et al. A comparative study of water-gas-shift reaction over ceria-supported metallic catalysts[J]. Applied Catalysis A:General,2004,258(2):271-276.
    [10]Grenoble D C,Estadt M M,Ollis D F. Chem Inform Abstract:the chemistry and catalysis of the water gas shift reaction. 1.The kinetics over supported metal catalysts[J]. Journal of Catalysis,1981,67(1):90-102.
    [11]Jacobs G,Chaney J A,Patterson P M,et al. Fischer-Tropsch synthesis:study of the promotion of Re on the reduction property of Co/Al2O3,catalysts by in situ EXAFS/XANES of Co K and Re LⅢedges and XPS[J]. Applied Catalysis A:General,2010,264(2):203-212.
    [12]Catapan R C,Oliveira A A M,Chen Y,et al. DFT study of the water gas shift reaction and coke formation on Ni(111)and Ni(211)surfaces[J]. Journal of Physical Chemistry C,2012,116(38):20281-20291.
    [13]Mohsenzadeh A,Richards T,Bolton K. DFT study of the water gas shift reaction on Ni(111),Ni(100)and Ni(110)surfaces[J]. Surface Science,2016,644:53-63.
    [14]Zhao Z J,Li Z,Cui Y,et al. Importance of metal oxide inter faces in heterogeneous catalysis:a combined DFT,microkinetic,and experimental study of water-gas shift on Au/MgO[J]. Journal of Catalysis,2017,345:157-169.
    [15]Zhang C,Liu B,Zhao L,et al. Insights into water gas shift reaction mechanisms over MoS2,and Co-MoS2,catalysts:a density functional study[J]. Reaction Kinetics Mechanisms&Catalysis,2017,120(2):833-844.
    [16]And H T,Nagai M. Density functional theory of water gas shift reaction on molybdenum carbide[J]. Journal of Physical Chemistry B,2005,109(43):20415-20423.
    [17]Ozgen Yalcln,Onal I. DFT investigation of high temperature water gas shift reaction on chromium–iron mixed oxide catalyst[J]. International Journal of Hydrogen Energy,2014,39(34):19563-19569.
    [18]Fu Z,Yang B,Zhang Y,et al. Dopant segregation and CO adsorption on doped Fe3O4,(111)surfaces:a first-principle study[J]. Journal of Catalysis,2018,364:291-296.
    [19]Zhu M,Wachs I E. A perspective on chromium Free iron oxide based catalysts for high temperature water gas shift reaction[J]. Catalysis Today,2018,311(1):2-7.
    [20]Posadapérez S,Gutiérrez R A,Zuo Z,et al. Highly active Au/δ-MoC and Au/β-Mo2C catalysts for the low-temperature water gas shift reaction:effects of the carbide metal/carbon ratio on the catalyst performance[J]. Catalysis Today,2017,289(22):47-52.
    [21]Feng L,Li X,Dadyburjor D B,et al. A temperature-programmed-reduction study on alkali-promoted,carbon supported molybdenum catalysts[J]. Journal of Catalysis,2000,190(1):1-13.
    [22]Chen Y Y,Dong M,Wang J,et al. On the role of a cobalt promoter in a water gas shift reaction on Co-MoS2[J].Journal of Physical Chemistry C,2010,114(39):16669-16676.
    [23]Kong W,Zhang X,Mao J,et al. Density functional study on the resistance to sulfur poisoning of Ptx(x=0,1,4 and 8)modifiedα-Mo2C(0001)surfaces[J]. Physical Chemistry Chemical Physics,2017,19(36):24879-24885.
    [24]Jakdetchai O,Nakajima T. Mechanism of the water-gasshift reaction over Cu(110),Cu(1l1)and Cu(100)surfaces:an AM1-d study[J]. Theochem,2002,619(1/3):51-58.
    [25]Saqlain M A,Hussain A,Siddiq M,et al. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT-D2study[J].Applied Surface Science,2018,435:1168-1173.
    [26]Liu Ping,Rodriguez J A. Water-gas-shift reaction on molybdenum carbide surfaces:essential role of the oxycarbide[J]. Journal of Physical Chemistry B,2006,110(39):19418-19425.
    [27]Patt J,Moon D J,Phillips C,et al. Thompson Molybdenum carbide catalysts for water-gas-shift[J]. Catalysis Letters,2000,65:193-195.
    [28]Schweitzer N M,Schaidle J A,Ezekoye O K,et al. Thompson high activity carbide supported catalysts for water gas shift[J]. Journal of the American Chemical Society,2011,133:2378-2381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700