用户名: 密码: 验证码:
铜对草鱼生长及肾脏中免疫相关基因表达的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of copper on growth and expression of immune-related genes in kidney of grass carp (Ctenopharyngodon idellus)
  • 作者:江红霞 ; 叶凯甲 ; 凌洁彬 ; 王李博 ; 孔祥会 ; 李学军
  • 英文作者:Jiang Hongxia;Ye Kaijia;Ling Jiebin;Wang Libo;Kong Xianghui;Li Xuejun;College of Fisheries,Henan Normal University;Dengzhou Fisheries Management Station;
  • 关键词:草鱼 ; ; 生长 ; 免疫相关基因 ; 基因表达
  • 英文关键词:Ctenopharyngodon idellus;;copper;;growth;;immune-related gene;;gene expression
  • 中文刊名:HNSX
  • 英文刊名:Journal of Henan Normal University(Natural Science Edition)
  • 机构:河南师范大学水产学院;邓州市水产管理站;
  • 出版日期:2019-06-04 11:42
  • 出版单位:河南师范大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.207
  • 基金:河南省科技厅重点科技攻关项目(192102110081);; 河南省教育厅科学技术重点研究项目(13A240509);; 河南师范大学个人科研项目结余经费资助专项(20180531);河南师范大学博士科研启动经费项目(qd17142)
  • 语种:中文;
  • 页:HNSX201904012
  • 页数:8
  • CN:04
  • ISSN:41-1109/N
  • 分类号:90-97
摘要
为了探讨水体重金属铜对草鱼(Ctenopharyngodon idellus)的生长和免疫的毒性作用,分别将草鱼在不同质量浓度的Cu~(2+)溶液中暴露30、60和90 d,检测了草鱼的均重和增重率的变化,以及草鱼肾脏中6种免疫相关基因表达的变化.结果表明:与对照组相比,各质量浓度Cu~(2+)暴露均使草鱼在30、60和90 d后的均体质和增体质率下降;0.40和0.60 mg·L~(-1)质量浓度Cu~(2+)暴露60和90 d后,IL-1β,CCL4和TNF-α基因在草鱼肾脏中的表达量均极显著升高(P<0.01),而IFN-γ和IgM基因在草鱼肾脏中的表达量均显著或极显著下降(P<0.05或P<0.01);Cu~(2+)暴露30、60和90 d后,草鱼肾脏中MT基因表达量均随着Cu~(2+)质量浓度的增加先升高后下降,在Cu~(2+)质量浓度为0.10 mg/L时达到最大值.综上,高质量浓度和长时间的Cu~(2+)暴露阻碍了草鱼的生长,引起了草鱼肾脏细胞的炎症反应,降低了草鱼的免疫功能.
        To investigate the toxic effect of waterborne copper on the growth and immunity of grass carp(Ctenopharyngodon idellus), grass carps were exposed in different concentrations of Cu~(2+)solutions for 30, 60 and 90 days, then the weight and weight gain rate, the expression changes of six immunity-related genes in kidney of grass carps were measured. The results showed that: Compared with the control group, the average weights and weight gain rates all decreased under different concentrations of Cu~(2+)exposures for 30, 60, and 90 days; After exposure to 0.40 and 0.60 mg·L~(-1) Cu~(2+)for 60 and 90 days, the expression levels of IL-1β, CCL4, and TNF-α genes in kidney of grass carp were extremely significantly increased(P<0.01), however, the expression levels of IFN-γ and IgM genes were significantly or extremely significantly decreased(P<0.05 or P<0.01); After 30, 60 and 90 days of Cu~(2+)exposures, the MT gene expression in kidney of grass carp increased at first and then decreased with the increasing of Cu~(2+)concentration, and reached the maximum value at the Cu~(2+)concentration of 0.10 mg·L~(-1). In conclusion,high concentration and long time Cu~(2+)exposure hindered the growth of grass carp, caused inflammatory reaction of kidney cells, and weakened the immune function of grass carp.
引文
[1] Chen Jiannchu,Lin Chiahsin.Toxicity of copper sulfate for survival,growth,molting and feeding of juveniles of the tiger shrimp,Penaeus monodon[J].Aquaculture,2001,192:55-65.
    [2] Eyckmans M,Celis N,Horemans N,et al.Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species[J].Aquatic Toxicology,2011,103:112-120.
    [3] 刘福军,张饮江,王明学.铜对鱼类慢性毒性研究进展[J].水生生物学报,2003,27(3):302-307.
    [4] 王利,汪开毓.铜在鲤体内的蓄积及毒性的研究[J].淡水渔业,2008,38(4):45-48.
    [5] 任洪涛,张春暖,林霖.Mo6+对草鱼组织器官及抗氧化酶活性的影响[J].水产科学,2017,36(3):317-322.
    [6] Zhu Qinglin,Luo Zhi,Zhuo Meiqin,et al.In vitro exposure to copper influences lipid metabolism in hepatocytes from grass carp (Ctenopharyngodon idellus)[J].Fish Physiology and Biochemistry,2014,40(2):595-695.
    [7] Wang Wanbin,Chen Sha,Wu Min,et al.Predicting copper toxicity to Hypophthalmichthys molitrix and Ctenopharyngodon idellus based on biotic ligand model[J].Environmental Sciences,2014,35(10):3947-3951.
    [8] 朱玉娇,刘永,胡成钰.Pb2+胁迫对草鱼过氧化氢酶和髓过氧化物酶的影响[J].南昌大学学报(理科版),2012,36(2):176-179.
    [9] 华涛,周启星.Cd-Zn对草鱼(Ctenopharyngodon idellus)的联合毒性及对肝脏超氧化物歧化酶(SOD)活性的影响[J].环境科学学报,2009,29(3):600-606.
    [10] Hansen JA,Lipton J,Welsh PG,et al.Relationship between exposure duration,tissue residues,growth,and mortality in rainbow trout (Oncorhynchus mykiss) juveniles sub-chronically exposed to copper[J].Aquatic Toxicology,2002,58:175-188.
    [11] James R,Sampath K,Jothilakshmi S,et al.Effects of copper toxicity on growth,reproduction and metal accumulation in chosen ornamental fishes[J].Ecohydrology and Hydrobiology,2008,8(1):89-97.
    [12] Liu XJ,Luo Z,Xiong BX,et al.Effect of waterborne copper exposure on growth,hepatic enzymatic activities and histology in Synechogobius hasta[J].Ecotoxicology and Environmental Safety,2010,73:1286-1291.
    [13] Jiang Hongxia,Kong Xianghui,Wang Shuping,et al.Effect of copper on growth,digestive and antioxidant enzyme activities of juvenile Qihe crucian carp,Carassius carassius,during exposure and recovery[J].Bulletin of Environmental Contamination and Toxicology,2016,96:333-340.
    [14] Bird Steve,Zou Jun,Wang Tiehui,et al.Evolution of interleukin-1β[J].Cytokine Growth Factor Reviews,2002,13:483-502.
    [15] Glass W G,Rosenberg H F,Murphy P M.Chemokine regulation of inflammation during acute viral infection[J].Current Opinion in Allergy and Clinical Immunology,2003,3(6):467-473.
    [16] Ebert L M,Scharrli P,Moser B.Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues[J].Molecular Immunology,2005,42(7):799-809.
    [17] Horiuchi T,Mitoma H,Harashima S,et al.Transmembrane TNF-α:structure,function and interaction with anti-TNF agents[J].Rheumatology,2010,49(7):1215-1228.
    [18] N rregaard R D,Dang M,Bach L,et al.Comparison of heavy metals,parasites and histopathology in sculpins (Myoxocephalus spp.) from two sites at a lead-zinc mine in North East Greenland[J].Environmental Research,2018,165:306-316.
    [19] Khan M I,Khisroon M,Khan A,et al.Bioaccumulation of heavy metals in water,sediments,and tissues and their histopathological effects on Anodonta cygnea (Linea,1876) in Kabul River,Khyber Pakhtunkhwa,Pakistan[J].BioMed Research International,2018,6:1-10.
    [20] Yin Jian,Wang Aiping,Li Wanfang,et al.Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish[J].Fish and Shellfish Immunology,2018,72:309-317.
    [21] 毛明光,刘宗柱,张培军.鱼类干扰素功能及信号转导研究[J].海洋科学,2008,32(2):85-90.
    [22] Reddy P S,Corley R B.The contribution of ER quality control to the biologic functions of secretory IgM[J].Immunology Today,1999,20:582-588.
    [23] Klimovich V B,Samoilovich M P,Klimovich B V.Problem of J-chain of immunoglobulins[J].Journal of Evolutionary Biochemistry and Physiology,2008,44(2):151-166.
    [24] Ghazy H A,Abdel-Razek M A S,Nahas A F E,et al.Assessment of complex water pollution with heavy metals and pyrethroid pesticides on transcript levels of metallothionine and immune related genes[J].Fish and Shellfish Immunology,2017,68:318-326.
    [25] Brouwer M,Brouwer T H.Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab,Callinectes sapidus[J].Archives of Biochemistry and Biophysics,1998,351(2):257-264.
    [26] Hogstrand C,Haux C.Binding and detoxification of heavy metals in lower vertebrates with reference to metallothionein[J].Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1991,100(1/2):137-141.
    [27] Bonham K,Gedamu L.Induction of metallothionein and metallothionein mRNA in rainbow-trout liver following cadmium treatment[J].Bioscience Reports,1984,4(8):633-642.
    [28] Olsson P E,Larsson A,Maage A,et al.Induction of metallothionein synthesis in rainbow trout,Salmo gairdneri,during long-term exposure to waterborne cadmium[J].Fish Physiological and Biochemistry,1989,6(4):221-229.
    [29] Ren Fei,Jiang Hui,Sun Jiangling,et al.Cloning,characterization,expression,and copper sensitivity of the metallothionein-1 gene in the Chinese mitten crab,Eriocheir sinensis[J].Molecular biology reports,2011,38(4):2383-2393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700