用户名: 密码: 验证码:
基于CT图像的细观混凝土模型中低应变率冲击下端部摩擦效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:End friction effects on concrete dynamic strength using meso -scale models based on XCT images
  • 作者:黎超 ; 杨贞军 ; 黄宇劼
  • 英文作者:LI Chao;YANG Zhen-jun;HUANG Yu-jie;School of Civil Engineering and Architecture,Zhejiang University;Zhejiang Province Institute of Architectural Design and Research;
  • 关键词:XCT图像 ; 混凝土 ; 细观模型 ; 端部摩擦效应 ; 动态强度增长因子 ; 蒙特卡洛模拟 ; 有限元法
  • 英文关键词:XCT images;;concrete;;meso-scale model;;end friction effect;;dynamic strength increase factor(DIF);;Monte Carlo simulation;;finite element method
  • 中文刊名:JSJG
  • 英文刊名:Chinese Journal of Computational Mechanics
  • 机构:浙江大学建筑工程学院;浙江省建筑设计研究院;
  • 出版日期:2019-06-15
  • 出版单位:计算力学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51779222);; 中央高校基本业务费(2017QNA4027)资助项目
  • 语种:中文;
  • 页:JSJG201903014
  • 页数:6
  • CN:03
  • ISSN:21-1373/O3
  • 分类号:90-95
摘要
基于微观X射线计算断层扫描(XCT)图像,采用单元替换像素的方法建立真实普通强度混凝土试件的细观有限元模型。该模型包含骨料、砂浆、界面过渡区和孔洞,并采用ABAQUS中的混凝土损伤塑性本构模型CDP来模拟各相材料。对20个基于XCT图像的细观模型进行了中低应变率(10~(-5) s~(-1)~2 s~(-1))冲击作用下的端部摩擦效应的蒙特卡洛模拟;并对模拟结果进行统计分析和曲线拟合,获得了动态抗压强度和端摩擦系数及应变率之间的定量关系式,以及无摩擦时抗压强度提高因子CDIF与应变率之间的关系式。结果表明,端摩擦能够提高混凝土的抗压强度,但当摩擦系数达到0.3后其影响不再明显;CDIF与应变率的对数■呈二次抛物线关系;拟合的关系式与实验结果吻合良好。
        Based on micro X-ray computed tomography(XCT) images from in-situ tests,this paper replaces image pixels with finite elements to build two-dimensional meso-scale models of real concrete specimens.The concrete damaged plasticity(CDP) model in ABAQUS is used to simulate constitutive phases:aggregates,mortars,interfacial transition zones(ITZ) and pores.The end friction effect under low to medium strain rates(10~(-5)~2 s~(-1)) is studied,and Monte Carlo simulations are conducted for 20 XCT image-based models.Through statistical analyses and curve fitting of the simulation results,a quantitative relation between the dynamic compressive strength and the end friction coefficient and strain rate is obtained.The results show that the end friction can increase the dynamic strength,but the effect becomes insignificant when the friction coefficient reaches 0.3.The fitted curve between CDIF and the logarithm of strain rate ■ without end friction is parabolic and is in good agreement with the experimental results.
引文
[1] 王晓燕,卢芳云,林玉亮,等.SHPB实验中端面摩擦效应研究[J].爆炸与冲击,2006,26(2):134-139.(WANG Xiao -yan,LU Fang-yun,LIN Yu-liang,et al.Study on interfacial friction effect in the SHPB tests[J].Explosion and Shock Waves,2006,26(2):134-139.(in Chinese))
    [2] 卢玉斌,宋丹路,李庆明,等.分离式霍普金森压杆试验中工程材料端面摩擦模型的确定[J].振动与冲击,2012,31(3):18-22.(LU Yu-bin,SONG Dan-lu,LI Qing-ming,et al.Interface friction model in split Hopkinson pressure bar tests for engineering materials[J].Journal of Vibration and Shock,2012,31(3):18-22.(in Chinese))
    [3] Li Q M,Meng H.About the dynamic strength enhancement of concrete -like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures,2003,40(2):343-360.
    [4] Hao Y,Hao H,Li Z X.Influence of end friction confinement on impact tests of concrete material at high strain rate[J].International Journal of Impact Engineering,2013,60:82-106.
    [5] Jin L,Xu C S,Han Y Q,et al.Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J].Shock and Vibration,2016,2016:1-20.
    [6] 党发宁,梁昕宇,陈厚群.混凝土三维细观接触面模型数值模拟与CT试验验证[J].计算力学学报,2011,28(1):120-124.(DANG Fa-ning,LIANG Xin-yu,CHEN Hou-qun.Numerical simulation on 3D meso -contact mesh of concrete and CT test [J].Chinese Journal of Computational Mechanics,2011,28(1):120-124.(in Chinese))
    [7] 刘汉昆,孙超,李杰.基于CT扫描的混凝土三维细观数值模拟[J].建筑科学与工程学报,2010,27(1):54-59.(LIU Han-kun,SUN Chao,LI Jie.Three -demensionalmesoscopic numerical simulation of concrete based on CT scan [J].Journal of Architecture and Civil Engineering,2010,27(1):54-59.(in Chinese))
    [8] Ren W Y,Yang Z J,Sharma R,et al.Two -dimensional X-ray CT image based meso -scale fracture modelling of concrete[J].Engineering Fracture Mechanics,2015,133:24-39.
    [9] Huang Y J,Yang Z J,Ren W Y,et al.3D meso -scale fracture modelling and validation of concrete based on insitu X-ray computed tomography images using damage plasticity model[J].International Journal of Solids and Structures,2015,67-68:340-352.
    [10] Huang Y J,Yang Z J,Chen X W,et al.Monte carlo simulations of meso -scale dynamic compressive be -havior of concrete based on X-ray computed tomo -graphy images[J].International Journal of Impact Engineering,2016,97:102-115.
    [11] Yang Z J,Ren W Y,Mostafavi M,et al.Characterisation of 3D fracture evolution in concrete using insitu X-ray computed tomography testing and digital volume correlation[A].VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures[C].Toledo,Spain,CIMNE,2013.
    [12] Zhou X Q,Hao H.Modelling of compressive beha-viour of concrete -like materials at high strain rate[J].International Journal of Solids and Structures,2008,45(17):4648-4661.
    [13] Snozzi L,Caballero A,Molinari J F.Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J].Cement and Concrete Research,2011,41(11):1130-1142.
    [14] Lubliner J,Oliver J,Oller S,et al.A plastic-damage model for concrete[J].International Journal of Solids and Structures,1989,25(3):299-326.
    [15] Lee J,Fenves G L.Plastic-damage model for cyclic loading of concrete structures[J].Journal of Engineering Mechanics,1998,124(8):892-900.
    [16] 过镇海.混凝土的强度和本构关系:原理与应用[M].北京:中国建筑工业出版社,2004.(GUO Zhen-hai.Concrete Strength and Constitutive Relation:Principle and Application[M].Beijing:Architecture and Building Press,2004.(in Chinese))
    [17] Hordijk D A.Tensile and tensile fatigue behaviour of concrete;experiments,modelling and analyses[J].Heron,1992,37(1):1-79.
    [18] Tedesco J W,Ross C A.Strain-rate -dependent constitutive equations for concrete[J].Journal of Pressure Vessel Technology,1998,120(4):398-405.
    [19] Grote D L,Park S W,Zhou M.Dynamic behavior of concrete at high strain rates and pressures.I:Experimental characterization[J].International Journal of Impact Engineering,2001,25(9):869-886.
    [20] Betonbau.fib Model Code for Concrete Structures 2010[M].Berlin:Ernst & Sohn Publishing House,2013.
    [21] Cowell W L.Dynamic Properties of Plain Portland Cement Concrete[R].Technical Report ,1966.
    [22] 肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,35(5):35-39.(XIAO Shi-yun,LIN Gao,LU Jing-zhou,et al.Effect of strain rate on dynamic behavior of concrete in compression[J].Journal of Harbin University of Civil Engineering and Architecture,2002,35(5):35-39.(in Chinese))
    [23] 孙吉书,窦远明,周戟,等.应变速率对混凝土抗压特性影响的试验研究[J].混凝土与水泥制品,2011(5):1-3,8.(SUN Ji-shu,DOU Yuan-ming,ZHOU Ji,et al.Experimental research of strain rate on compressive property effects of concrete[J].China Concerete and Cement Products,2011(5):1-3,8.(in Chinese))
    [24] 王洁,刘俊飞,支雁飞,等.混凝土动态抗压特性的试验研究[J].低温建筑技术,2013,35(5):3-5.(WANG Jie,LIU Jun-fei,ZHI Yan-fei,et al.Experimental study on the dynamic compressive properties of concrete[J].Low Temperature Architecture Technology,2013,35(5):3-5.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700