用户名: 密码: 验证码:
基于光谱烧孔效应的激光稳频技术研究与进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect
  • 作者:韩琳 ; 林弋戈 ; 杨晶 ; 蓝英杰 ; 李烨 ; 王小军 ; 薄勇 ; 彭钦军
  • 英文作者:Han Lin;Lin Yige;Yang Jing;Lan Yingjie;Li Ye;Wang Xiaojun;Bo Yong;Peng Qinjun;Research Center of Laser Physics and Technology,Key Laboratory of Functional Crystal and Laser Technology,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences;Time and Frequency Division,National Institute of Metrology;
  • 关键词:激光技术 ; 激光稳频 ; 稀土离子掺杂晶体 ; 光谱烧孔效应 ; 半导体激光器 ; 染料激光器
  • 英文关键词:laser technology;;laser frequency stabilization;;rare-earth-ion-doped crystal;;spectral hole-burning effect;;diode lasers;;dye lasers
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心;中国计量科学研究院时间频率计量研究所;
  • 出版日期:2019-01-14 11:49
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.646
  • 基金:国家自然科学基金青年基金(11504390)
  • 语种:中文;
  • 页:JGDJ201911003
  • 页数:11
  • CN:11
  • ISSN:31-1690/TN
  • 分类号:28-38
摘要
基于低温稀土离子掺杂晶体中的光谱烧孔效应的激光稳频技术,以低温下稀土离子掺杂晶体中的光谱烧孔为频率锁定参考,有更低的热噪声极限,而且,与基于法布里-珀罗参考腔的激光稳频技术相比,该技术具有对外界温度、压力和加速度的变化更不敏感的优势,因此其频率稳定度理论上可达10~(-17)量级,能实现与法布里-珀罗参考腔可比拟甚至超越的稳频效果。从理论原理、技术实现、国内外研究进展几方面介绍了基于光谱烧孔效应的激光稳频技术,并对其在频率稳定技术领域的发展前景进行了展望。
        Laser frequency stabilization based on the spectral hole-burning effect in the cryogenic rare-earth-iondoped crystal makes use of the spectral holes in the absorption of doped ions as the frequency reference.This technique has a low thermal noise limit.In comparison with the laser frequency stabilization technique based on the Fabry-Perot cavity,the proposed laser frequency stabilization technique is more insensitive to temperature,pressure,and acceleration,thereby featuring its viability to let frequency stabilization reach the theoretical limit of10~(-17),which is comparable or even beyond with that of a Fabry-Perot cavity.The laser frequency stabilization technique based on spectral hole-burning effect is introduced from the aspects of theoretical principle,technical realization,and research progress at home and abroad.Furthermore,its development trend in the field of frequency stabilization is prospected.
引文
[1]Pollnau M,Bernhardi E H,Worhoff K,et al.Dualwavelength narrow-linewidth lasers and their applications[C]∥Advanced Solid State Lasers,October 27-November 01,2013,Paris.Washington D.C.:Optical Society of America,2013:ATu1A.6.
    [2]Becker A,Sichkovskyi V,Rippien A,et al.InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication[C]∥Photonic Networks;18.ITG-Symposium,May 11-12,2017,Leipzig,Germany.New York:IEEE,2017,18:134-136.
    [3]Bernhardi E H,de Ridder R M,W9rhoff K,et al.Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing[J].Proceedings of SPIE,2013,8599:859909.
    [4]Chen H Q,Jiang Y Y,Bi Z Y,et al.Progress and trend of narrow-linewidth lasers[J].Science China Technological Sciences,2013,56(7):1589-1596.
    [5]Shen H,Li L F,Chen L S.Lasers with ultra-narrow linewidth:theories and applications of laser frequency stabilization[J].Physics,2016,45(7):441-448.沈辉,李刘锋,陈李生.超窄线宽激光:激光稳频原理及其应用[J].物理,2016,45(7):441-448.
    [6]Cao J,Zhang P,Shang J,et al.A compact,transportable single-ion optical clock with 7.8×10-17systematic uncertainty[J].Applied Physics B,2017,123(4):112.
    [7]Ludlow A D,Boyd M M,Ye J,et al.Optical atomic clocks[J].Reviews of Modern Physics,2015,87(2):637-701.
    [8]Ludlow A D,Huang X,Notcutt M,et al.Compact,thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15[J].Optics Letters,2007,32(6):641-643.
    [9]Kessler T,Hagemann C,Grebing C,et al.A sub-40-mHz-linewidth laser based on a silicon singlecrystal optical cavity[J].Nature Photonics,2012,6(10):687-692.
    [10]Weng W L,Anstie J D,Stace T M,et al.NanoKelvin thermometry and temperature control:beyond the thermal noise limit[J].Physical Review Letters,2014,112(16):160801.
    [11]Notcutt M,Ma L S,Ludlow A D,et al.Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J].Physical Review A,2006,73(3):031804.
    [12]Hafner S,Falke S,Grebing C,et al.8×10-17fractional laser frequency instability with a long roomtemperature cavity[J].Optics Letters,2015,40(9):2112-2115.
    [13]Cone R L,Thiel C W,Sun Y C,et al.Quantum information,laser frequency stabilization,and optical signal processing with rare-earth doped materials[C]∥Laser Science,October 6-10,2013,Orlando,Florida United States.Washington D.C.:Optical Society of America,2013:LTu1G.3.
    [14]Michael J T,Lars R,Tara M F,et al.Frequencystabilization to 6×10-16 via spectral-hole burning[J].Nature Photonics,2011,5(11):688-673.
    [15]Thorpe M J,Leibrandt D R,Rosenband T.Shifts of optical frequency references based on spectral-hole burning in Eu3+Y2SiO5[J].New Journal of Physics,2013,15(3):033006.
    [16]Leibrandt D R,Thorpe M J,Notcutt M,et al.Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J].Optics Express,2011,19(4):3471-3482.
    [17]Julsgaard B,Walther A,Kr9ll S,et al.Understanding laser stabilization using spectral hole burning[J].Optics Express,2007,15(18):11444-11465.
    [18]Rippe L,Julsgaard B,Walther A,et al.Laser stabilization using spectral hole burning[EB/OL].(2006-11-05)[2018-11-05].https:∥arxiv.org/abs/quant-ph/0611056.
    [19]Sellin P B,Strickland N M,Carlsten J L,et al.Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning[J].Optics Letters,1999,24(15):1038-1040.
    [20]Strickland N M,Sellin P B,Sun Y,et al.Laser frequency stabilization using regenerative spectral hole burning[J].Physical Review B,2000,62(3):1473-1476.
    [21]B9ttger T,Pryde G J,Strickland N M,et al.Semiconductor lasers stabilized to spectral holes in rare-earth crystals[J].Optics and Photonics News,2001,12(12):23.
    [22]Sellin P B,Strickland N M,B9ttger T,et al.Laser stabilization at 1536nm using regenerative spectral hole burning[J].Physical Review B,2001,63(15):155111.
    [23]B9ttger T,Sun Y,Pryde G J,et al.Diode laser frequency stabilization to transient spectral holes and spectral diffusion in Er3+:Y2SiO5 at 1536nm[J].Journal of Luminescence,2001,94/95:565-568.
    [24]Pryde G J,B9ttger T,Cone R L,et al.Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy[J].Journal of Luminescence,2002,98(1/2/3/4):309-315.
    [25]B9ttger T,Pryde G J,Cone R L.Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning[J].Optics Letters,2003,28(3),200-202.
    [26]B9ttger T,Pryde G J,Thiel C W,et al.Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4[J].Journal of Luminescence,2007,127(1):83-88.
    [27]Chen Q F,Troshyn A,Ernsting I,et al.Spectrally narrow,long-term stable optical frequency reference based on a Eu3+∶Y2SiO5 crystal at cryogenic temperature[J].Physical Review Letters,2011,107(22):223202.
    [28]Leibrandt D R,Thorpe M J,Chou C W,et al.Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5[J].Physical Review Letters,2013,111(23):237402.
    [29]Sabooni M,Li Q,Rippe L,et al.Spectral engineering of slow light,cavity line narrowing,and pulse compression[J].Physical Review Letters,2013,111(18):183602.
    [30]Thiel C W,Cone R L,B9ttger T.Laser linewidth narrowing using transient spectral hole burning[J].Journal of Luminescence,2014,152:84-87.
    [31]Thiel C W,B9ttger T,Cone R L.Rare-earth-doped materials for applications in quantum information storage and signal processing[J].Journal of Luminescence,2011,131(3):353-361.
    [32]Drever R W P,Hall J L,Kowalski F V,et al.Laser phase and frequency stabilization using an optical resonator[J].Applied Physics Photophysics and Laser Chemistry,1983,31(2):97-105.
    [33]Young B C,Cruz F C,Itano W M,et al.Visible Lasers with Subhertz Linewidths[J].Physical Review Letters,1999,82(19):3799-3802.
    [34]Notcutt M,Ma L S,Ye J,et al.Simple and compact 1Hz laser system via an improved mounting configuration of a reference cavity[J].Optics Letters,2005,30(14):1815-1817.
    [35]Chen L,Hall J L,Ye J,et al.Vibration-induced elastic deformation of Fabry-Perot cavities[J].Physical Review A,2006,74(5):053801.
    [36]Nicholson T L,Martin M J,Williams J R,et al.Comparison of two independent Sr optical clocks with1×10-17 stability at 103 s[J].Physical Review Letters,2012,109(23):230801.
    [37]Matei D G,Legero T,Hafner S,et al.1.5μm lasers with sub-10 mHz linewidth[J].Physical Review Letters,2017,118(26):263202.
    [38]Tay J W,Farr W G,Ledingham P M,et al.Hybrid optical and electronic laser locking using slow light due to spectral holes[J].Physical Review A,2013,87(6):063824.
    [39]Cook S,Rosenband T,Leibrandt D R.Laserfrequency stabilization based on steady-state spectralhole burning in Eu3+∶Y2SiO5[J].Physical Review Letters,2015,114(25):253902.
    [40]Gobron O,Jung K,Galland N,etal.Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rareearth doped crystals[J].Optics Express,2017,25(13):15539-15548.
    [41]You Q,Spectral hole burning:a research tools with significant application potential[J].Laser&Optoelectronics Progress,1992,29(9):25-25.友清.光谱烧孔:具有重大应用潜力的研究工具[J].激光与光电子学进展,1992,29(9):25-25.
    [42]Zhou F X.Persistence spectral hole burning and its application[J].Laser&Optoelectronics Progress,1988,25(1):13-15.周福新.持久性光谱烧孔及其应用[J].激光与光电子学进展,1988,25(1):13-15.
    [43]Huang J,Tang Z L,Niang R S.Technology of spectral hole burning[J].Optical Technique,2000,26(4):379-382.黄菁,唐志列,梁瑞生.光谱烧孔技术[J].光学技术,2000,26(4):379-382.
    [44]Xue S L,Chen L B,Zhao Y Y,et al.Persistent spectral hole burning of Eu3+doped Y2SiO5crystal at579.62nm[J].Journal of the Chinese Rare Earth Society,2006,24(4):510-512.薛绍林,陈凌冰,赵有源,等.579.62nm波长处Y2SiO5∶Eu3+晶体永久性光谱烧孔[J].中国稀土学报,2006,24(4):510-512.
    [45]Wang W.Measurement of tunable laser frequency stability based on spectral-hole burning[D].Tianjin:Tianjin University of Technology,2013.王伟.基于光谱烧孔的可调谐激光器频率稳定度测量[D].天津:天津理工大学,2013.
    [46]Fan X L.Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D].Hangzhou:China University of Metrology,2016.范夏雷.超窄线宽PDH稳频技术中的剩余幅度调制(RAM)抑制[D].杭州:中国计量大学,2016.
    [47]Su J,Jiao M X,Ma Y Y,et al.Design of pounddrever-hall laser frequency stabilization system using the quadrature demodulation[J].Chinese Journal of Lasers,2016,43(3):0316001.苏娟,焦明星,马源源,等.正交解调Pound-DreverHall激光稳频系统设计[J].中国激光,2016,43(3):0316001.
    [48]Milani G,Rauf B,Barbieri P,et al.Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[J].Optics Letters,2017,42(10):1970-1973.
    [49]Han L,Bo Y,Yang J,et al.An adjustable frequency stabilization laser:107069416A[P].2017-08-18.韩琳,薄勇,杨晶,等.一种可调谐稳频激光器:107069416A[P].2017-08-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700