用户名: 密码: 验证码:
青藏高原夏季云水含量及其水汽输送年际异常分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interannual Anomaly of Cloud Water Content and Its Connection with Water Vapor Transport over the Qinghai-Tibetan Plateau in Summer
  • 作者:刘菊菊 ; 游庆龙 ; 王楠
  • 英文作者:LIU Juju;YOU Qinglong;WANG Nan;Key Laboratory of Meteorological Disaster,Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD);Nanjing University of Information Science and Technology(NUIST);Department of Atmospheric and Oceanic Sciences &Institute of Atmospheric Sciences,Fudan University;
  • 关键词:青藏高原 ; 云水含量 ; 水汽输送 ; 水汽通道
  • 英文关键词:Qinghai-Tibetan Plateau(QTP);;cloud water content;;water vapor transport;;water vapor channels
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心;复旦大学大气与海洋科学系/大气科学研究院;
  • 出版日期:2019-06-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:国家重点研发计划项目(2016YFA0601702);; 国家自然科学基金项目(41771069);; 江苏高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:GYQX201903001
  • 页数:11
  • CN:03
  • ISSN:62-1061/P
  • 分类号:3-13
摘要
利用欧洲中期天气预报中心(ECMWF)提供的1979—2016年ERA-Interim再分析资料分析了青藏高原(下称高原)夏季云水含量及其水汽输送情况。结果表明:高原夏季云水含量占全年48%,东南向西北减少。影响高原云水含量的水汽通道有印度洋通道、南海通道、孟加拉湾北部及伊朗西部通道(依次简称通道1、2、3、4)。高原云水含量和各水汽通道强度均有明显年际变化。云水含量年际变化与通道2,4基本一致。云水含量与各水汽通道强度均呈增加趋势。通道1偏强时,来自印度洋北部和南海的异常水汽在孟加拉湾交汇向高原输送,主要使高原西北部云水含量增多。通道2偏强时,南海、中南半岛的异常偏南通量及孟加拉湾北部的异常西南通量向高原东南部输送更多水汽。通道3偏强时,西风带水汽和来自印度洋水汽更多输送到高原,主要使高原东北部云水含量偏多。通道4偏强时,来自南海-孟加拉湾南部的水汽向高原异常输送,使高原中部、东南部云水含量偏多。此外,西太平洋副热带高压(下称副高)偏西南偏强时,水汽通道2、4强度偏强,有利于水汽向高原输送。
        Based on the ERA-Interim reanalysis data from 1979 to 2016 provided by the European Center for Mediumrange Weather Forecast(ECMWF),the cloud water content and its water vapor transport over the QinghaiTibetan Plateau(QTP) in summer is analyzed.The results show that the summer cloud water content over the QTP accounts for 48% of the total year,which decreases from southeast to northwest.There are four water vapor channels affecting the cloud water content,which are the Indian Ocean channel,the South China Sea channel,the northern Bay of Bengal and the western Iranian channel(briefly called channel 1,2,3,4 in order),respectively.There are obvious interannual variations of cloud water content and water vapor channel intensities.The interannual variation of cloud water content is in consistent with that of channel 2 and 4.It is shown that both the cloud water content and four channel intensities have increased trends.When the intensity of channel 1 is strong,abnormal water vapor from the northern part of the Indian Ocean and the South China Sea will convergent over the Bay of Bengal and be transported to the QTP,which mainly increases the cloud water content in the northwestern part of the QTP.When the intensity of channel 2 is strong,the anomalous southward flux over the South China Sea and the Indo-China Peninsula and the anomalous southwest flux over the northern Bay of Bengal support more water vapor to the southeastern QTP.The stronger channel 3 intensity indicates more water vapor from westerly and Indian Ocean are transported to the QTP,resulting more cloud water content in the northeastern QTP.When the intensity of channel 4 is strong,the water vapor from the South China Sea to the southern part of the Bay of Bengal is abnormally transported to the QTP,resulting more cloud water content in the central and southeastern TP.In addition,the stronger and southwestward of northwest Pacific subtropical high is consistent with stronger identities of channel 2 and 4,which is conducive to the transportation of water vapor to the QTP.
引文
Dee D P,Uppala S M,Simmons A J,et al,2011.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J].Quarterly Journal of the royal meteorological society,137(656):553-597.DOI:10.1002/qj.828.
    Feng L,Zhou T J,2012.Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J].Journal of Geophysical Research Atmospheres,117:D20114.DOI:10.1029/2011JD017012.
    Li J L F,Waliser D E,Chen W T,et al,2012.An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data[J].Journal of Geophysical Research Atmosphere,117:D16105.DOI:10.1029/2012JD017640.
    Wu G,Zhang Y,1998.Tibetan Plateau forcing and the Asian Monsoon onset over south Asia and South China Sea[J],Monthly Weather Review,126(4):913-927.DOI:10.1175/1520-0493(1998)126<091 3:tpfatt>2.0.co;2.
    白磊,王维霞,姚亚楠,等,2013.ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J].沙漠与绿洲气象,7(3):51-56.
    保云涛,游庆龙,谢欣汝,2018.青藏高原积雪时空变化特征及异常成因[J].高原气象,37(4):899-910.DOI:10.7522/j.issn.1000-0534.2017.00099.
    陈德亮,徐柏青,姚檀栋,等,2015.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,60(32):3025-3035.DOI:10.1360/N972014-01370.
    樊威伟,马伟强,郑艳,等,2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象,37(3):591-601.DOI:10.7522/j.Issn.1000-0534.2017.00062.
    高荣,韦志刚,钟海玲,2017.青藏高原陆表特征与中国夏季降水的关系研究[J].冰川冻土,39(4):741-747.DOI:10.7522/j.issn.1000-0240.2017.0084.
    耿蓉,2017.基于卫星和再分析数据的大气水循环变量比较和分析[D].合肥:中国科学技术大学.
    过霁冰,徐祥德,施晓晖,等,2012.青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J].高原气象,31(4):900-909.
    韩熠哲,马伟强,王炳赟,等,2017.青藏高原近30年降水变化特征分析[J].高原气象,36(6):1477-1486.DOI:10.7522/j.issn.1000-0534.2016.00125.
    衡志炜,2013.基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D].合肥:中国科学技术大学.
    李永华,徐海明,高阳华,等,2010.西南地区东部夏季旱涝的水汽输送特征[J].气象学报,68(6):932-943.
    林厚博,游庆龙,焦阳,等,2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象,35(2):309-317.DOI:10.7522/j.issn.1000-0534.2014.00146.
    鲁春霞,谢高地,成升魁,等,2004.青藏高原的水塔功能[J].山地学报,22(4):428-432.DOI:10.16089/j.cnki.1008-2786.2004.04.008.
    潘留杰,张宏芳,周毓荃,等,2015.1979-2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠,35(2):456-463.DOI:10.7522/j.issn.1000-694X.2014.0034.
    潘留杰,张宏芳,朱伟军,等,2013.ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究,18(1):111-123.DOI:10.3878/j.issn.1006-9585.2012.11097.
    石晓兰,杨青,姚俊强,等,2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象,10(2):50-56.DOI:10.3969/j.issn.100 2-0799.2016.02.008.
    王青霞,吕世华,鲍艳,等,2014.青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J].高原气象,33(2):301-312.DOI:10.7522/j.issn.1000-0534.2014.00002.
    王顺久,2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象,36(5):1153-1164.DOI:10.7522/j.issn.1000-0534.2016.00117.
    王霄,巩远发,岑思弦,2009.夏半年青藏高原“湿池”的水汽分布及水汽输送特征[J].地理学报,64(5):601-608.
    吴国雄,毛江玉,段安民,等,2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报,62:528-540.
    姚檀栋,朱立平,2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展,21(5):459-464.
    张人禾,苏凤阁,江志红,等,2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报,60(32):3036-3047.DOI:10.1360/N972014-01296.
    周晓霞,丁一汇,王盘兴,2008.影响华北汛期降水的水汽输送过程[J].大气科学,32(2):92-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700