用户名: 密码: 验证码:
杨梅杨梅种间嫁接及亲缘关系分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Interspecific Grafting and Phylogenetic Analysis of Myrica cerifera and Myrica rubra
  • 作者:梁森苗 ; 张淑文 ; 任海英 ; 郑锡良 ; 戚行江
  • 英文作者:Liang Senmiao;Zhang Shuwen;Ren Haiying;Zheng Xiliang;Qi Xingjiang;Institute of Horticulture,Zhejiang Academy of Agricultural Sciences;
  • 关键词:杨梅 ; 杨梅 ; 砧木 ; 种间嫁接 ; 相关性分析 ; 聚类分析
  • 英文关键词:Myrica cerifera;;Myrica rubar;;rootstock;;interspecific grafting;;correlation analysis;;cluster analysis
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:浙江省农业科学院园艺研究所;
  • 出版日期:2019-04-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:浙江省农业(果品)新品种选育重大科技专项(2016C02052-2);; 浙江省重点研发计划项目(2018C02011);; 国家公益性行业(农业)科研专项(201203089)
  • 语种:中文;
  • 页:LYKE201904018
  • 页数:7
  • CN:04
  • ISSN:11-1908/S
  • 分类号:174-180
摘要
【目的】研究蜡杨梅杨梅的嫁接亲和性及亲缘关系,为杨梅扩展栽培提供参考。【方法】连续3年在浙江余姚滩涂上(土壤pH8. 01),以蜡杨梅杨梅为砧木,以4种主栽品种‘荸荠种’‘东魁’‘夏至红’和‘水晶种’为接穗的种间嫁接,并基于SSR对蜡杨梅杨梅进行亲缘关系鉴定和聚类分析。调查各砧穗组合的嫁接成活率及相关指标。【结果】杨梅砧穗组合的嫁接成活率为:70. 08%~83. 75%,其中‘夏至红’接穗的嫁接成活率最高(81. 98%),‘荸荠种’次之(80. 43%);蜡杨梅砧穗组合的嫁接成活率为27. 51%~38. 29%,其中,‘东魁’接穗的嫁接成活率最高(34. 88%);杨梅砧穗组合的嫁接成活率极显著高于蜡杨梅砧穗组合。不同组合间的T-test显示:蜡杨梅砧穗组合BQ4-6、DK4-6和SJ4-6分别在冠径、干周和植株高度等指标上显著性高于杨梅砧穗组合。6个指标的相关性分析显示:2个砧木群体在连续3年的试验中,嫁接成活率与植株高度和冠径之间均存在显著性正相关,砧木高度与植株高度均呈现显著性负相关。利用127对SSR标记对2个砧木及4个接穗材料进行了多态性检测,聚类分析后分为3个群体,蜡杨梅杨梅的种间亲缘系数为0. 31,杨梅砧木与‘夏至红’亲缘关系最近,与‘荸荠种’次之;蜡杨梅与‘东魁’亲缘关系最近;与嫁接成活率的表现一致,亲缘关系越近成活率越高。【结论】蜡杨梅砧木与杨梅接穗间存在一定的亲和性,而且更适合生长在碱性土壤中。
        【Objective】Chinese bayberry(Myrica rubar Sieb. et Zucc.) is an evergreen tree species and suitable for growing in weak acid soil,and it has been cultivated mainly in southern China. Bayberry fruit is ripe in early summer and delicious with attractive color,flavor,and high economic and medicinal value. M. cerifera is suitable for growing in poor alkaline soil,and different from M. rubar. It is of practical significance to study the grafting compatibility and genetic relationship between M. rubar and M. cerifera for expanding M. rubar cultivation. 【Method】For three consecutive years,M. rubra and M. cerifera were used as rootstocks,and four cultivated varieties(‘Biqizhong',‘Dongkui',‘Xiazhihong'and ‘Shuijingzhong') as scions,and the interspecific grafting was carried out on the beach of Yuyao,Zhejiang Province(soil pH8.01). The genetic relationship between M. rubar and M. cerifera was identified and clustered based on SSR.After three years of grafting experiments,survival rate of grafting and related indexes of rootstock-scion combinations were investigated. 【Results】The grafting survival rate of rootstock-scion combinations of M. rubra was 70.08-83.47%,among which the grafting survival rate of scion of ‘Xiazhihong ' was highest(81. 98%),and the grafting survival rate of‘Biqizhong'was the second(80.43%). The grafting survival rate of rootstock-scion combinations of M. cerifera were 27.51%-38.29%,among which the grafting survival rate of scion ‘Dongkui'was highest(34.88%). The grafting survival rate of M. cerifera rootstock-scion combinations was significantly lower than that of M. rubar rootstock-scion combinations.T-test showed that BQ4-6,DK4-6 and SJ4-6 of M. cerifera rootstock-scion combinations had significantly higher crown diameter,dry rootstock perimeter and plant height than those of M. rubra combinations,respectively. The correlation analysis of six indexes showed that there was a significant positive correlation between grafting survival rate and plant height and crown diameter,and a negative correlation between plant height and rootstock height in both rootstock populations over three consecutive years experiment. A total of 127 SSR markers were used to detect DNA polymorphisms of 2 rootstocks and 4 scions,these materials were clustered into 3 groups,and the genetic similarity between M. cerifera and M. rubra was 0.31. The relationship between rootstock of M. rubra and ‘Xiazhihong'was the closest,followed by‘Biqizhong'. The rootstock of M. cerifera had the highest relationship coefficients with‘Dongkui'; it was demonstrated that the closer genetic relationship the higher grafting survival rate. 【Conclusion】This study proved that M. cerifera used as rootstocks had to a certain degree grafting affinity with M. rubra scion,which was more suitable than M. rubra rootstocks for growing in alkali soil.
引文
陈云斐.2013.蜡杨梅砧木嫁接东魁杨梅盐碱地栽培研究.安徽农业科学,41(27):11030-11031.(Chen Y F.2013.Cultivation Experiment on Myrica rubra Dongkui Grafted onto Myrica cerifera in saline-alkali soil.Journal of Anhui Agriculture Science.41(27):11030-11031.[in Chinese])
    何文,潘鹤立,潘腾飞,等.2017.果树砧穗互作研究进展.园艺学报,44(9):1645-1657.(He W,Pan H L,Pan T F,et al.2017.Research progress on the interaction between scion and rootstock in fruit trees.Acta Horticulturae Sinica,44(9):1645-1657.[in Chinese])
    李志真.2009.杨梅根瘤内生菌的生物学特征.林业科学,45(1):81-87.(Li Z Z.2009.The biological characteristics of Actinomycetes Frankia living in roots of Myrica rubra.Scientia Silvae Sinicae,45(1):81-87.[in Chinese])
    梁琴,陶建平,邓锋,等.2015.喀斯特山区9种常见树木叶片在防火期的阻火性分析.林业科学,51(3):102-108.(Liang Q,Tao J P,Deng F,et al.2015.Fire resistance of leaves during fire prevention period of nine common tree species in Karst Mountain Regions.Scientia Silvae Sinicae,51(3):102-108.[in Chinese])
    梁森苗,王耀锋,刘玉学,等.2015.我国杨梅主产地土壤养分状况的分析.果树学报,32(4):658-665.(Liang S M,Wang Y F,Liu Y X,et al.2015.Present situation of soil nutrients in bayberry orchard of China.Journal of Fruit Science,32(4):658-665.[in Chinese])
    舒立福,田晓瑞,寇纪烈.1999.广西大桂山区防火树种的选择研究.林业科学,35(1):69-76.(Shu L F,Tian X R,Kou J L.1999.Studies on fire resistant tree species of Dagui Mountains,Guangxi Zhuang Autonomous Region.Scientia Silvae Sinicae,35(1):69-76.[in Chinese])
    徐云焕,梁森苗,郑锡良,等.2016.叶面营养对杨梅果实产量和品质的影响及各指标的相关性.浙江农业学报,28(10):1711-1717.(Xu Y H,Liang S M,Zheng X L,et al.2016.Effects of foliar nutrition on fruit yield and quality of Chinese bayberry(Myrica rubra Sieb.et Zucc.).Acta Agriculturae Zhejiangensis,28(10):1711-1717.[in Chinese])
    张晓华,高智慧,张晓勉,等.2011.蜡杨梅砧木嫁接的晚稻杨梅盐碱地栽培试验.浙江林业科技,31(4):47-50.(Zhang X H,Gao Z H,Zhang X M,et al.2011.Cultivation Experiment on Myrica rubra var.Wandao Grafted onto M.cerifera on salinealkali soil.Journal of Zhejiang Forestry Science and Technology,31(4):47-50.[in Chinese])
    Ashraf M,Hasnain S,Berge O,et al.2004.Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress.Biology and Fertility of Soils,40(3):157-162.
    Erickson D L and Hamrick J L.2003.Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence.Heredity,90(1):25-32.
    Goldschmidt E.2014.Plant grafting:new mechanisms,evolutionary implications.Frontiers in Plant Science,5(5):727.
    Jia H M,Jiao Y,Wang G Y,et al.2015.Genetic diversity of male and female Chinese bayberry(Myrica rubra)populations and identification of sex-associated markers.BMC Genomics,16(1):394.
    Jiao Y,Jia H M,Li X W,et al.2012.Development of simple sequence repeat(SSR)markers from a genome survey of Chinese bayberry(Myrica rubra).BMC Genomics,13(1):201.
    Mudge K,Goldschmidt E,Scofield S R,et al.2009.A history of grafting.Horticultural Reviews,35:437-487.
    Ostendorp A,Pahlow S,Deke J,et al.2016.Protocol:optimisation of a grafting protocol for oilseed rape(Brassica napus)for studying longdistance signaling.Plant Methods,12(1):22.
    Panwar M,Tewari R,Nayyar H.2016.Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp.improve seed yield of Mungbean(Vigna radiata L.)under soil salinity by reducing sodium uptake and stress injury.Physiology and Molecular Biology of Plants,DOI 10.1007/s12298-016-0376-9.
    Paterson A H,Brubaker C,Wendel J F.1993.A rapid method for extraction of cotton(Gossypium spp.)genomic DNA suitable for AFLP or PCR analysis.Plant Molecular Biology,11(2):122-127.
    Radford A E,Ahles H E,Bell C R.1968.Manual of the Vascular Flora of the Carolinas.Chapel Hill,University of North Carolina Press.
    Rohlf F J.2005.NTSYSpc:Numerical Taxonomy System ver.2.20d,Exeter Publishing,Ltd.Setauket,NY.http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html.
    Shrivastava P,Kumar R.2015.Soil salinity:a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation.Saudi Journal of Biological Sciences,22(2):123-131.
    Slama I,Abdelly C,Bouchereau A,et al.2015.Diversity,distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress.Annals of Botany,1-15.
    Sneath P H A,Sokal R R.1973.Numerical taxonomy,W.Freeman,San Francisco,573.
    Wang W T,Feng C,Zhang Z H,et al.2016.Development of highly polymorphic expressed sequence tags-simple sequence repeat markers and their application in analysis of genetic diversity of Chinese bayberry(Morella rubra).Hortscience,51(3):227-231.
    Xie R J,Zhou J,Wang G Y,et al.2011.Cultivar identification and genetic diversity of Chinese bayberry(Myrica rubra)accessions based on fluorescent SSR markers.Plant Molecular Biololgy Reporter,29(3):554-562.
    Young D R,Sande E,Peters G A.1992.Spatial relationships of Frankia and Myrica cerifera on a Virginia,USA barrier island.Symbiosis,12:209-220.
    Zhang J,Guo W Z,Zhang T Z.2002.Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L.×Gossypium barbadense L.)with a haploid population.Theoretical and Applied Genetics,105(8):1166-1174.
    Zhang S Y,Li X,Feng C,et al.2012.Development and characterization of 109 polymorphic EST-SSRs derived from the Chinese bayberry(Myrica rubra,myricaceae)transcriptome.American Journal of Botany,99(12):e501-e507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700