用户名: 密码: 验证码:
变顶高尾水洞水电站水轮机调节系统的Hopf分岔及其动态仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hopf Bifurcation and Dynamic Simulation of Hydraulic Turbine Governing System of Hydropower Station with Sloping Ceiling Tailrace Tunnel
  • 作者:陶敏 ; 张成立
  • 英文作者:TAO Min;ZHANG Cheng-li;Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology;
  • 关键词:变顶高尾水洞 ; 水轮机调节 ; 非线性模型 ; Hopf分岔 ; RKF方法 ; 负荷变化 ; 动态仿真
  • 英文关键词:sloping ceiling tailrace tunnel;;hydraulic turbine governing system;;nonlinear model;;Hopf bifurcation;;RKF algorithm;;load variation;;dynamic simulation
  • 中文刊名:SDNY
  • 英文刊名:Water Resources and Power
  • 机构:昆明理工大学冶金与能源工程学院;
  • 出版日期:2019-05-25
  • 出版单位:水电能源科学
  • 年:2019
  • 期:v.37;No.225
  • 基金:昆明理工大学分析测试基金(2017M20162102040)
  • 语种:中文;
  • 页:SDNY201905034
  • 页数:4
  • CN:05
  • ISSN:42-1231/TK
  • 分类号:139-142
摘要
基于刚性水击、非线性水轮机、三阶发电机、PID调速器等模型,建立了变顶高尾水洞水电站的水轮机调节系统的非线性模型,运用Hopf分岔理论分析了动力系统的分岔现象,以PID调节参数作为动力系统的分岔参数分析了接力器时间常数、尾水洞坡度和甩负荷对系统稳定域的影响,并采用RKF方法对系统进行了负荷变化的动态仿真。结果表明,系统的Hopf分岔为亚临界,接力器时间常数增大时系统稳定域减小,尾水洞坡度应取较小值,机组甩负荷时系统稳定域增大;在稳定域内系统是渐进稳定的,所建立的模型可用于大波动和小波动的动态仿真
        The nonlinear model of hydraulic turbine governing system with sloping ceiling tailrace tunnel was established based on the models of rigid water hammer,nonlinear water turbine,three-order generator,and PID governing system.The bifurcation phenomenon of the dynamic system was analyzed by means of the Hopf bifurcation theory.The influences of the engager relay time constant,the sloping value of sloping ceiling tailrace tunnel and the load rejection on the stability domain of the system were analyzed by regarding PID parameters as the bifurcation parameters.Finally,the dynamic simulation of load variation was carried out by the RKF algorithm.The results indicate that the Hopf bifurcation of the system is subcritical,the stability domain of the system decreases while the engager relay time constant increases,the sloping value of sloping tailrace tunnel should be smaller and the stability domain of the system increases when the load decreases.Moreover,the system is gradually stable in the stable domain and the established model can be used for the dynamic simulation of large or small fluctuations.
引文
[1] Krivchenko G I,Kvyatkovskaya E V,Vasil’Ev A B,et al.New Design of Tailrace Conduits of Hydropower Plants[J].Hydrotechnical Construction,1985,19(7):352-357.
    [2]杨建东,陈鉴治,陈文斌,等.水电站变顶高尾水洞体型研究[J].水利学报,1998,29(3):9-12.
    [3]雷艳,杨建东,赖旭,等.某电站变顶高尾水洞水力工作特性模型试验研究[J].武汉水利电力大学学报:工学版,1999,32(6):23-27.
    [4]赖旭,陈鉴治,杨建东.变顶高尾水洞水电站机组运行稳定性研究[J].水力发电学报,2001(4):102-107.
    [5]郭文成,杨建东,王明疆.基于Hopf分岔的变顶高尾水洞水电站水轮机调节系统稳定性研究[J].水利学报,2016,47(2):189-199.
    [6] Guo W C,Yang J D,Chen J P,et al.Nonlinear Modeling and Dynamic Control of Hydro-turbine Governing System with Upstream Surge Tank and Sloping Ceiling Tailrace Tunnel[J].Nonlinear Dynamics,2016,84(3):1-15.
    [7]沈祖诒.水轮机调节系统分析[M].北京:水利电力出版社,1991.
    [8] IEEE Working Group.Hydraulic Turbine and Turbine Control Model for System Dynamic Studies[J].IEEE Trans on Power System,1992,7(1):167-179.
    [9]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [10]李继彬,冯贝叶.稳定性、分支与混沌[M].昆明:云南科技出版社,1995.
    [11]凌代俭,陶阳,沈祖诒.考虑弹性水击效应时水轮机调节系统的Hopf分岔分析[J].振动工程学报,2007,20(4):374-380.
    [12]曾云,张立翔,钱晶,等.弹性水击水轮机微分代数模型的仿真[J].排灌机械工程学报,2014,32(8):691-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700