用户名: 密码: 验证码:
广义流传递过程的广义耗散最小化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generalized dissipation minimization for generalized flow transfer processes
  • 作者:夏少军 ; 陈林
  • 英文作者:XIA ShaoJun;CHEN LinGen;Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology;School of Mechanical & Electrical Engineering, Wuhan Institute of Technology;
  • 关键词:广义流传递过程 ; 广义耗散最小化 ; 传热传质 ; 电容器充电 ; 经济贸易 ; 最优控制 ; 广义热力学优化
  • 英文关键词:generalized flow transfer process;;generalized dissipation minimization;;heat and mass transfer;;capacitor charging;;economic trade;;optimal control;;generalized thermodynamic optimization
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:武汉工程大学热科学与动力工程研究所;武汉工程大学机电工程学院;
  • 出版日期:2019-04-04 11:47
  • 出版单位:中国科学:技术科学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(批准号:51576207,51606218);; 湖北省自然科学基金(批准号:2018CFB708);; 海军工程大学自主立项科研项目(批准号:20161504)资助
  • 语种:中文;
  • 页:JEXK201905002
  • 页数:17
  • CN:05
  • ISSN:11-5844/TH
  • 分类号:15-31
摘要
广义热力学优化理论研究的重要内容之一是追求优化结果的普适性.本文首先在回顾现有文献关于传热、传质、电容器充电、经济贸易过程等不可逆过程动态优化研究工作的基础上,基于广义热力学优化理论的研究思路,通过定义广义势、广义力、广义流、广义势容、广义耗散、广义耗散力等物理量,建立了一类广义流传递过程的广义热力学物理模型,形成了相应的动态优化问题,即在广义流守恒方程约束下求解广义流传递过程广义耗散最小化.然后,分别应用欧拉-拉格朗日方程和平均最优控制理论导出了普适的优化结果即最优性条件,并基于普适的优化结果得到了一些新结论.接着,进一步讨论了上述研究结果和结论在换热过程、等温节流、单向等温传质、双向等温传质、等温结晶过程、电容器充电过程、经济贸易过程等特例中的应用.最后,提出了不可逆过程"广义热力学动态优化"的研究思想.本文的研究结果丰富和完善了广义热力学优化理论.
        One of the important research contents of generalized thermodynamic optimization theory is to pursue universality of optimization results. Firstly, on the basis of summarizing and inducing the reasearch contents of dynamic optimizationsfor various irreversible transport processes, including heat transfer, mass transfer, capacitor charging, and resource exchange, this paper defines some physical quantities including generalized potential, generalized force, generalized flow, generalized potenetial capacity, genralized dissipation, generalized dissipation force, and further establishes a generalized therodynamic physical model of a class of generalized flow transfer processes based on generalized thermodynamic optimization theory. The corresponding dynamic optimization problem is formulated. Secondly, the universal optimization result, i.e. the optimality condition as shown in this paper, is obtained by using Euler-Lagrangian method and averaged optimal control theory, respectively. Some new conclusions are obtained based on these universal results. Thirdly, those new results and conclusions are further applied to some special examples, including heat transfer,isothermal throttling, one-way isothermal mass transfer, two-way isothermal equimolar mass transfer, isothermal crystallization,capacitor charging, economic trade processes and so on. Finally, the research idea of "generalized thermodynamic dynamicoptimization" is put forward. The results in this paper enriches and consummates the generalized thermodynamic optimization theory.
引文
1 Andresen B,Berry R S,Nitzan A,et al.Thermodynamics in finite time.I.The step-Carnot cycle.Phys Rev A,1977,15:2086-2093
    2 Hoffmann K H,Burzler J M,Schubert S.Endoreversible thermodynamics.J Non-Equilib Thermodyn,1997,22:311-355
    3 Chen L G,Wu C,Sun F R.Finite time thermodynamic optimization or entropy generation minimization of energy systems.J Non-Equilib Thermodyn,1999,24:327-359
    4 Hoffmann K H,Burzler J,Fischer A,et al.Optimal process paths for endoreversible systems.J Non-Equilib Thermodyn,2003,28:233-268
    5 Andresen B.Current trends in finite-time thermodynamics.Angew Chem Int Ed,2011,50:2690-2704
    6李俊,陈林根,戈延林,等.正反向两源热力循环有限时间热力学性能优化的研究进展.物理学报,2013,62:130501
    7 Hoffmann K H,Andresen B,Salamon P.Finite-time thermodynamics tools to analyze dissipative processes.In:Dinner A R,ed.Proceedings of the 240 Conference:Science’s Great Challenges,Advances in Chemical Physics,Volume 157.Hoboken:Wiley,2015.57-67
    8 Chen L G,Meng F K,Sun F R.Thermodynamic analyses and optimization for thermoelectric devices:The state of the arts.Sci China Tech Sci,2016,59:442-455
    9 Ge Y L,Chen L G,Sun F R.Progress in finite time thermodynamic studies for internal combustion engine cycles.Entropy,2016,18:139
    10 Sieniutycz S,Tsirlin A.Finding limiting possibilities of thermodynamic systems by optimization.Phil Trans R Soc A,2017,375:20160219
    11 Bejan A.Entropy Generation Through Heat and Fluid Flow.New York:Wiley,1982
    12 Andresen B.Finite-Time Thermodynamics.Physics Laboratory II,University of Copen-Hagen,1983
    13 Bejan A.Entropy Generation Minimization.Boca Raton:CRC Press,1996
    14 Tsirlin A M.Methods of Averaging Optimization and Their Application.Moscow:Physical and Mathematical Literature Publishing Company,1997
    15 Berry R S,Kazakov V A,Sieniutycz S,et al.Thermodynamic Optimization of Finite Time Processes.Chichester:Wiley,1999
    16 Mironova V A,Amelkin S A,Tsirlin A M.Mathematical Methods of Finite Time Thermodynamics.Moscow:Khimia,2000
    17 Tsirlin A M.Optimization Methods in Thermodynamics and Microeconomics.Moscow:Nauka,2002
    18 Tsirlin A M.Irreversible Estimates of Limiting Possibilities of Thermodynamic and Microeconomic Systems.Moscow:Nauka,2003
    19 Chen L G,Sun F R.Advances in Finite Time Thermodynamics:Analysis and Optimization.New York:Nova Science Publishers,2004
    20陈林根.不可逆过程和循环的有限时间热力学分析.北京:高等教育出版社,2005
    21吴锋,陈林根,孙丰瑞,等.斯特林机的有限时间热力学优化.北京:化学工业出版社,2008
    22 Tsirlin A M.Optimization for Thermodynamic and Economic Systems.Moscow:Nauka,2011
    23 Sieniutycz S,Jezowski J.Energy Optimization in Process Systems and Fuel Cells.Oxford:Elsevier,2013
    24 Sieniutycz S.Thermodynamic Approaches in Engineering Systems.Oxford:Elsevier,2016
    25陈林根,夏少军.不可逆过程的广义热力学动态优化.北京:科学出版社,2017
    26陈林根,夏少军.不可逆循环的广义热力学动态优化--热力与化学理论循环.北京:科学出版社,2018
    27陈林根,夏少军.不可逆循环的广义热力学动态优化--工程热力装置与广义机循环.北京:科学出版社,2018
    28毕月红,陈林根.空气热泵性能有限时间热力学优化.北京:科学出版社,2017
    29 Bejan A.A general variational principle for thermal insulation system design.Int J Heat Mass Transfer,1979,22:219-228
    30 Salamon P,Nitzan A,Andresen B,et al.Minimum entropy production and the optimization of heat engines.Phys Rev A,1980,21:2115-2129
    31 Tondeur D,Kvaalen E.Equipartition of entropy production.An optimality criterion for transfer and separation processes.Ind Eng Chem Res,1987,26:50-56
    32 Linetskii S B,Tsirlin A M.Evaluating thermodynamic efficiency and optimizing heat exchangers.Thermal Eng,1988,35:593-597
    33 Andresen B,Gordon J M.Optimal heating and cooling strategies for heat exchanger design.J Appl Phys,1992,71:76-79
    34 Andresen B,Gordon J M.Optimal paths for minimizing entropy generation in a common class of finite-time heating and cooling processes.Int JHeat Fluid Flow,1992,13:294-299
    35 Spirkl W,Ries H.Optimal finite-time endoreversible processes.Phys Rev E,1995,52:3485-3489
    36 Ratkje S K,Sauar E,Hansen E M,et al.Analysis of entropy production rates for design of distillation columns.Ind Eng Chem Res,1995,34:3001-3007
    37 Sauar E,Kjelstrup Ratkje S,Lien K M.Equipartition of forces:A new principle for process design and optimization.Ind Eng Chem Res,1996,35:4147-4153
    38 Xu J.Comments on“Equipartition of forces:A new principle for process design and optimization”.Ind Eng Chem Res,1997,36:5040-5044
    39 Sauar E,Kjelstrup S,Lien K M.Rebuttal to comments on“Equipartition of forces:A new principle for process design and optimization”.Ind Eng Chem Res,1997,36:5045-5046
    40 Bedeaux D,Standaert F,Hemmes K,et al.Optimization of processes by equipartition.J Non-Equilib Thermodyn,1999,24:242-259
    41 Kjelstrup S,Sauar E,Bedeaux D,et al.The driving force distribution for minimum lost work in chemical reactors close to and far from equilibrium.1.Theory.Ind Eng Chem Res,1999,38:3046-3050
    42 Kjelstrup S,Island T V.The driving force distribution for minimum lost work in a chemical reactor close to and far from equilibrium.2.Oxidation of SO2.Ind Eng Chem Res,1999,38:3051-3055
    43 Haug-Warberg T.Comments on“Equipartition of forces:A new principle for process design and optimization”.Ind Eng Chem Res,2000,39:4431-4433
    44 Kjelstrup S,Bedeaux D,Sauar E.Minimum entropy production by equipartition of forces in irreversible thermodynamics.Ind Eng Chem Res,2000,39:4434-4436
    45 Nummedal L,Kjelstrup S.Equipartition of forces as a lower bound on the entropy production in heat exchange.Int J Heat Mass Transfer,2001,44:2827-2833
    46 Tsirlin A M,Kazakov V.Realizability areas for thermodynamic systems with given productivity.J Non-Equilib Thermodyn,2002,27:91-103
    47 Johannessen E,Nummedal L,Kjelstrup S.Minimizing the entropy production in heat exchange.Int J Heat Mass Transfer,2002,45:2649-2654
    48 Balkan F.Comparison of entropy minimization principles in heat exchange and a short-cut principle:EoTD.Int J Energy Res,2003,27:1003-1014
    49 Badescu V.Optimal strategies for steady state heat exchanger operation.J Phys D-Appl Phys,2004,37:2298-2304
    50 Badescu V.Optimal paths for minimizing lost available work during usual finite-time heat transfer processes.J Non-Equilib Thermodyn,2004,29:53-73
    51 Bi Y H,Guo T W,Zhang L,et al.Entropy generation minimization for charging and discharging processes in a gas-hydrate cool storage system.Appl Energy,2010,87:1149-1157
    52 Thiel G P,McGovern R K,Zubair S M,et al.Thermodynamic equipartition for increased second law efficiency.Appl Energy,2014,118:292-299
    53 Austb?B,Gundersen T.Optimal distribution of temperature driving forces in low-temperature heat transfer.AIChE J,2015,61:2447-2455
    54 Sieniutycz S,Tsirlin A M,Akhremenkov A A.Minimal dissipation conditions of heat exchange systems.Int J Heat Mass Transfer,2017,110:539-544
    55宋伟明,孟继安,梁新刚,等.一维换热器中温差场均匀性原则的证明.化工学报,2008,59:2460-2464
    56郭江峰,许明田,程林.换热器设计中的火积耗散均匀性原则.中国科学:技术科学,2010,40:671-676
    57郭江峰,许明田,程林.换热量和换热面积给定时的火积耗散最小原则.科学通报,2010,55:3146-4141
    58 Xia S J,Chen L G,Sun F R.Optimization for entransy dissipation minimization in heat exchanger.Sci Bull,2009,54:3587-3595
    59 Xia S J,Chen L G,Sun F R.Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law.Appl Math Model,2010,34:2242-2255
    60 Xia S J,Chen L G,Xie Z H,et al.Entransy dissipation minimization for generalized heat exchange processes.Sci China Tech Sci,2016,59:1507-1516
    61 Tsirlin A M.Optimal Cycles and Cycle Regimes.Moscaw:Energomizdat,1985
    62过增元,李志信,周森泉.换热器中的温差场均匀性原则.中国科学E辑:技术科学,1996,26:25-31
    63夏少军,陈林根,孙丰瑞.传热规律下换热过程最小熵产生优化.热科学与技术,2008,7:226-230
    64 Chen L G,Xia S J,Sun F R.Optimal paths for minimizing entropy generation during heat transfer processes with a generalized heat transfer law.J Appl Phys,2009,105:044907
    65 Xia S J,Chen L G,Sun F R.Optimal paths for minimizing lost available work during heat transfer processes with a generalized heat transfer law.Braz J Phys,2009,39:99-106
    66柳雄斌,过增元,孟继安.换热器中的积耗散与热阻分析.自然科学进展,2008,18:1186-1190
    67过增元,梁新刚,朱宏晔.积--描述物体传递热量能力的物理量.自然科学进展,2006,16:1288-1296
    68 Guo Z Y,Zhu H Y,Liang X G.Entransy-A physical quantity describing heat transfer ability.Int J Heat Mass Transfer,2007,50:2545-2556
    69夏少军,陈林根,孙丰瑞.换热器积耗散最小优化.科学通报,2009,54:2240-2246
    70 Tsirlin A M,Kazakov V A,Berry R S.Finite-time thermodynamics:Limiting performance of rectification and minimal entropy production in mass transfer.J Phys Chem,1994,98:3330-3336
    71 Mironova V A.Thermodynamic optimization of a crystallization process.Russ Chem Ind,1994,26:77-81
    72 Tsirlin A M,Mironova V A,Amelkin S A,et al.Finite-time thermodynamics:Conditions of minimal dissipation for thermodynamic process with given rate.Phys Rev E,1998,58:215-223
    73 Leskov E E,Tsirlin A M.Optimization of membrane separations.Theor Found Chem Eng,2007,41:467-474
    74夏少军,陈林根,孙丰瑞.一类单向等温传质过程积耗散最小化.中国科学:技术科学,2011,41:515-524
    75 Xia S J,Chen L G,Sun F R.Entransy dissipation minimization for one-way isothermal mass transfer processes with a generalized mass transfer law.Sci Iranica,2012,19:1616-1625
    76夏少军,陈林根,戈延林,等.等温节流过程积耗散最小化.物理学报,2013,62:180202
    77夏少军,陈林根,孙丰瑞.扩散传质定律结晶过程积耗散最小化.机械工程学报,2013,49:175-182
    78 Xia S J,Chen L G,Sun F R.Optimization of equimolar reverse constant-temperature mass-diffusion process for minimum entransy dissipation.Sci China Tech Sci,2016,59:1867-1873
    79 Bi Y H,Chen J,Miao Z.Thermodynamic optimization for dissociation process of gas hydrates.Energy,2016,106:270-276
    80 Chen L G,Xia S J,Sun F R.Entropy generation minimization for isothermal crystallization processes with a generalized mass diffusion law.Int J Heat Mass Transfer,2018,116:1-8
    81 Chen L G,Wang C,Xia S J,et al.Thermodynamic analyses and optimizations of extraction process of CO2from acidic seawater by using hollow fiber membrane contactor.Int J Heat Mass Transfer,2018,124:1310-1320
    82陈林根,孙丰瑞,Wu C.有限时间热力学理论和应用的发展现状.物理学进展,1998,18:395-422
    83 Chen L G,Bi Y H,Wu C.The influence of nonlinear flow resistance relations on the power and efficiency from fluid flow.J Phys D-Appl Phys,1999,32:1346-1349
    84 Radcenco V.Generalized Thermodynamics.Bucharest:Editura Techica,1994
    85 Chen L G,Feng H J,Xie Z H.Generalized thermodynamic optimization for iron and steel production processes:Theoretical exploration and application cases.Entropy,2017,18:353
    86 Bejan A.Maximum power from fluid flow.Int J Heat Mass Transfer,1996,39:1175-1181
    87 Hu W Q,Chen J.General performance characteristics and optimum criteria of an irreversible fluid flow system.J Phys D-Appl Phys,2006,39:993-997
    88 Bejan A,Almerbati A,Lorente S.Economies of scale:The physics basis.J Appl Phys,2017,121:044907
    89 Patra P,Fussell D S.On efficient adiabatic design of MOS circuits.Phys Comp,1996,96:1-11
    90 Paul S.Optimal charging capacitor.In:European Conference on Circuit Theory and Design.Budapest,1997.918-922
    91 Desoete B,De Vos A.Optimal charging of capacitors.In:Trullemans A,Spars J,eds.Proceedings of the 8th International Workshop Patmos.Lyngby,1998.335-344
    92 De Vos A,Desoete B.Optimal thermodynamic processes in finite time.In:Wu C,Chen L G,Chen J C.Recent Advances in Finite-Time Thermodynamics.New York:Nova Science Publishing,1999.249-272
    93 De Vos A,Desoete B.Equipartition principles in finite-time thermodynamics.J Non-Equilib Thermodyn,2000,25:1-13
    94 Paul S,Schlaffer A M,Nossek J A.Optimal charging of capacitors.IEEE Trans Circuits Syst I,2000,47:1009-1016
    95 Chen J C.Optimization on the charging process of a capacitor.Int J Electron,2001,88:145-151
    96 Xia S J,Chen L G.Theoretical and experimental investigation of optimal capacitor charging process in RC circuit.Eur Phys J Plus,2017,132:235
    97 Bejan A,Dan N.Maximum work from an electric battery model.Energy,1997,22:93-102
    98 Chen J,Zhou Y.Minimum Joule heating dissipated in the charging process of a rechargeable battery.Energy,2001,26:607-617
    99施哲强,陈金灿.电池在最大输出功时的负载匹配和放电时间选择.厦门大学学报(自然科学版),2001,40:868-872
    100 Yan Z.A note on maximum work from an electric battery model.Energy,2002,27:197-201
    101 Shi Z Q,Chen J C,Wu C.Maximum work output of an electric battery and its load matching.Energy Convers Manage,2002,43:241-247
    102 Chen J C,Shi Z Q,Chen X.The maximum work output of an electric battery in a given time.Renew Energy,2002,27:189-196
    103 Tsirlin A M.Optimal control of resource exchange in economic systems.Autom Remote Control,1995,56:401-408
    104 De Vos A.Endoreversible thermodynamics versus economics.Energy Convers Manage,1999,40:1009-1019
    105 Martinás K.About irreversibility in economics.Open Syst Inf Dyn,2000,7:349-364
    106 Tsirlin A M,Kazakov V A.Optimal processes in irreversible thermodynamics and microeconomics.Interdis Descrip Complex Syst,2004,2:29-42
    107 Tsirlin A M.Irreversible microeconomics:Optimal processes and equilibrium in closed systems.Autom Remote Control,2008,69:1201-1215
    108 Xia S J,Chen L G,Sun F R.Optimization for capital dissipation minimization in a common of resource exchange processes.Math Comput Model,2011,54:632-648
    109 Chen Y R.Maximum profit configurations of commercial engines.Entropy,2011,13:1137-1151
    110 Xia S J,Chen L G.Capital dissipation minimization for a class of complex irreversible resource exchange processes.Eur Phys J Plus,2017,132:201
    111 Amel’kin S A,Martináas K,Tsirlin A M.Optimal control for irreversible processes in thermodynamics and microeconomics.Autom Remote Control,2002,63:519-539
    112 Amelkin S A.Limiting possibilities of resource exchange process in complex open microeconomic system.Interdis Descrip Complex Syst,2004,2:43-52
    113 Tsirlin A M,Kazakov V.Optimal processes in irreversible microeconomics.Interdis Descrip Complex Syst,2006,4:102-123
    114 Elgerd O.Control Systems Theory.New York:McGraw-Hill,1967.446-456
    115 Athas W C,Svensson L J,Koller J G,et al.Low-power digital systems based on adiabatic-switching principles.IEEE Trans VLSI Syst,1994,2:398-407
    116 Mita K,Boufaida M.Ideal capacitor circuits and energy conservation.Am J Phys,1999,67:737-739

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700