用户名: 密码: 验证码:
组合转子疲劳-蠕变联合损伤机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Mechanism of Combined Rotor’s Fatigue-Creep Joint Damages
  • 作者:王艾伦 ; 邓桂龙 ; 刘强 ; 李世杰
  • 英文作者:WANG Ailun;DENG Guilong;LIU Qiang;LI Shijie;Key Laboratory of High Performance and Complex Manufacturing,Central South University;College of Mechanical and Electrical Engineering,Central South University;
  • 关键词:组合转子 ; 疲劳 ; 蠕变 ; 联合损伤
  • 英文关键词:combined rotor;;fatigue;;creep;;joint damage
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:中南大学高性能复杂制造国家重点实验室;中南大学机电工程学院;
  • 出版日期:2019-05-23 10:31
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.514
  • 基金:国家重点基础研究发展计划(973计划)资助项目(2013CB035706)
  • 语种:中文;
  • 页:ZGJX201910004
  • 页数:7
  • CN:10
  • ISSN:42-1294/TH
  • 分类号:26-32
摘要
以某重型燃气轮机组合转子为研究对象,建立了组合转子整体损伤模型;将纯疲劳和纯蠕变的损伤研究作为基础,根据损伤力学累积模型将联合作用下的损伤变量表示为两种损伤的非线性叠加,揭示了疲劳-蠕变联合作用下组合转子的损伤机理;对疲劳-蠕变联合条件下组合转子的损伤规律进行了实验验证。结果表明,建立的整体损伤模型是正确的、有效的,可为部件损伤预测组合转子的整体损伤提供参考。
        A study of the combined rotor of a heavy gas turbine was conducted, and the whole damage model of the combined rotor was established. Based on the damage research of pure fatigue and pure creep, the damage variables under joint actions were expressed as the nonlinear superposition of two kinds of damages according to the damage mechanics accumulation model, therefore the damage mechanism of the combined rotor under the actions of fatigue-creep joints was revealed, and the damage rules of the combined rotor were verified experimentally.The results show that the whole damage model is correct and effective, and it may provide a reference for component damage prediction of the overall damages of the combined rotor.
引文
[1] 苏永雷.拉杆松弛与组合转子性能退化的关联性研究[D].长沙:中南大学,2014.SU Yonglei.The Correlation Research of Rod Relaxation and Performance Degradation of Combined Rotor[D].Changsha:Central South University,2014.
    [2] 李雪鹏,王艾伦.拉杆疲劳裂纹导致的组合转子性能退化研究[J].工程设计学报,2014,21(4):382-388.LI Xuepeng,WANG Ailun.Research on Performance Degradation of Combined Rotor Considering the Fatigue Crack in the Rod[J].Chinese Journal of Engineering Design,2014,21(4):382-388.
    [3] 张海彪.轮盘蠕变引起的组合转子性能退化机理研究[D].长沙:中南大学,2016.ZHANG Haibiao.Research of Performance Degradation Mechanism of Combined Rotor Caused by Turbine Discs Creep[D].Changsha:Central South University,2016.
    [4] 蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Status and Development Trend of the Heavy Duty Gas Turbine[J].Proceedings of the CSEE,2014,34(29):5096-5102.
    [5] 孙永健.大型汽轮机转子低周疲劳损伤评估问题研究[D].上海:上海交通大学,2014.SUN Yongjian.On Assessment of Low Cycle Fatigue Damage If Large Steam Turbine Rotor[D].Shanghai:Shanghai Jiao Tong University,2014.
    [6] BECHKERA A,HYDE T H,SUN W,et al.Benchmarks for Finite Element Analysis of Creep Continuum Damage Mechanics [J].Computational Materials Science,2002,25(1):34-41.
    [7] 薛吉林,周昌玉,王波,等.基于蠕变损伤的P91钢应力-应变本构关系[J].南京工业大学学报(自然科学版),2013,35(4):33-37.XUE Jilin,ZHOU Changyu,WANG Bo,et al.Stress-Strain Constitutive Relation of P91 Steel Based on Creep Damage[J].Journal of Nanjing University of Technology(Natural Science Edition),2013,35(4):33-37.
    [8] 毛雪平,刘宗德,杨昆,等.基于时间硬化理论的蠕变损伤计算模型[J].机械强度,2004,26(1):105-108.MAO Xueping,LIU Zongde,YANG Kun,et al.Creep Damage Calculation Model Based on Time-harden Theroy[J].Journal of Mechanical Strength,2004,26(1):105-108.
    [9] MASHAYEKHI M,TAGHIPOUR A,ASKARI A,et al.Continuum Damage Mechanics Application in Low-cycle Thermal Fatigue [J].International Journal of Damage Mechanics,2012,22(2):285-300.
    [10] SHANG D G,YAO W X.A Nonlinear Damage Cumulative Model for Uniaxial Fatigue [J].International Journal of Fatigue,1999,21(2):187-194.
    [11] TARIA S.Lifetime of Structures Subjected to Varying Load and Temperature[M]//Creep in Structures.New York:Academic Press,1960:96-124.
    [12] NAYEBI A,RANJBAR H,ROKHGIREH H.Analysis of Unified Continuum Damage Mechanics Model of Gas Turbine Rotor Steel:Life Assessment [J].Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design and Applications,2013,227(3):216-225.
    [13] 曾攀.蠕变-疲劳交互作用下的结构分析[J].固体力学学报,1994,15(l):65-70.ZENG Pan.Structural Analysis under Creep-fatigue Interaction[J].Acta Mechanica Solida Sinica,1994,15(l):65-70.
    [14] 刘宁波.基于损伤力学的轮盘结构疲劳-蠕变损伤分析及寿命预测[D].成都:电子科技大学,2013.LIU Ningbo.Life Prediction and Analysis of Damage under Fatigue-creep Condition for Disk Based on Damage Mechanics[D].Chendu:University of Electronic Science and Technology of China,2013.
    [15] 田红亮.机械结构固定结合部虚拟材料的动力学建模[D].武汉:华中科技大学,2011.TIAN Hongliang.Dynamic Modeling on Fixed Joint Interface Virtual Material in Mechanical Structure[D].Wuhan:Huazhong University of Science and Technology,2011.
    [16] 刘强,王艾伦.基于损伤力学的周向拉杆转子整体疲劳损伤研究[J].工程设计学报,2017,24(5):572-579.LIU Qiang,WANG Ailun.Research on the Whole Fatigue Damage of Circumferential Rod Fastening Rotor Based on Damage Mechanics[J].Chinese Journal of Engineering Design,2017,24(5):572-579.
    [17] MAZARS J.Application de la Mecanique de L’endommagement au Comportement Non Lineaire et a la Rupture du Beton de Structure[D].Paris:University Paris ,1984.
    [18] SHANG D G,YAO W X.Study on Nonlinear Continue Damage Cumulative Model for Uniaxial Fatigue [J].Acta Aeronautica et Astronautica Sinica,1998,19(6):647-656.
    [19] LEMAITRE J.Evaluation of Dissipation and Damage in Metals Submitted to Dynamic Loading [J].Mechanical Behavior of Materials,1972,76(6):540-549.
    [20] LEMAITRE J.Application of Damage Concepts to Predict Creep-Fatigue Failures [J].Journal of Engineering Materials and Technology,1979,101:284-292.
    [21] 刘建杰,巩建鸣,姜勇.基于损伤力学的Cr25Ni35Nb炉管材料蠕变损伤有限元分析[J].压力容器,2012,29(11):20-24.LIU Jianjie,GONG Jianming,JIANG Yong.Finite Element Analysis on Creep Damage for Furnace Tube of Cr25Ni35Nb Steel Based on Damage Mechanics[J].Pressure Vessel Technology,2012,29(11):20-24.
    [22] 艾志斌,范志超,陈学东,等.高温环境下蠕变疲劳交互作用损伤力学研究[J].中国特种设备安全,2008(1):9-13.AI Zhibin,FAN Zhichao,CHEN Xuedong,et al.Studies on Continuum Damage Mechanism of Creep-Fatigue Interaction at High Temperature[J].China Special Equipment Safety,2008(1):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700