用户名: 密码: 验证码:
再生丝素蛋白溶液的制备条件对纤维性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Preparation Conditions of Regenerated Silk Fibroin Solutions on Fiber Properties
  • 作者:吴惠英 ; 姚平 ; 周燕 ; 许磊 ; 左保齐
  • 英文作者:Huiying Wu;Ping Yao;Yan Zhou;Lei Xu;Baoqi Zuo;College of Textile & Art, Suzhou Institute of Trade & Commerce;College of Textile & Clothing Engineering, Soochow University;
  • 关键词:再生丝素蛋白溶液 ; 制备条件 ; 纳米原纤 ; 静电纺丝 ; 力学性能
  • 英文关键词:regenerated silk fibroin solution;;preparation condition;;fibril;;electrospinning;;mechanical property
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:苏州经贸职业技术学院纺艺学院;苏州大学纺织与服装工程学院;
  • 出版日期:2019-04-15
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51763001);; 2017年江苏省高等学校自然科学研究项目(17KJB540004);; 2017年江苏省高校优秀科技创新团队;; 2018江苏高校“青蓝工程”优秀青年骨干教师培养项目;; 2018年苏州经贸职业技术学院院级科研项目(KY-ZRA1803)
  • 语种:中文;
  • 页:GFZC201904020
  • 页数:7
  • CN:04
  • ISSN:51-1293/O6
  • 分类号:127-132+138
摘要
利用氯化钙(CaCl_2)/甲酸(FA)溶解脱胶丝素制备再生丝素蛋白纳米纤维,研究了溶液制备条件(一步法、二步法)对纤维成形及纤维性能的影响。结果表明,2种方法都可以获得具有天然纳米原纤的纺丝溶液,但纺丝溶液中的原纤尺寸有所差异,一步法由于纺丝液中有未去除的盐和长度较大的原纤结构而影响了纤维的成形,形成的纤维直径不均匀、易粘连。二步法制备的溶液中原纤直径与一步法相近,但长度缩减到90~140 nm,使纤维的可纺性得到改善,纤维表面更光滑、细度更均匀,纤维的可牵伸性增强,牵伸0.5倍后断裂强度增加到(16.5±1.5) MPa,断裂伸长率达到17.2%±2.4%,降解30 d后的降解率仅5.2%。
        CaCl_2/formid acid(FA) system was adopted to dissolve degummed silk, the effects of solution preparation conditions(one-step, two-step) on the fiber formation and fiber properties were discussed. The results indicate that these two methods could obtain the silk fibroin solutions which characterized by preserving the natural fibril structure, however, the fibril size in the spinning solution is different. In the one-step method, the salt in the spinning solution is not removed and the fibrils are longer, so the formation of fibers is affected. The diameter of nanofibers is uneven, and the fibers are easy to adhesion. The diameter of the fibril in the solution prepared by the two-step method is similar to that by the one-step method, but the length is reduced to(90~140) nm, the spinnability of the fiber is improved, the surface of the fiber is smoother, the fineness is more uniform, and the draftability of the fiber is enhanced. After 0.5 times of drawing, the stress at break increases to(16.5±1.5) MPa, the elongation at break reaches 17.2%±2.4%, and the degradation rate after 30 d of degradation is only 5.2%.
引文
[1] 于群,刘呈坤,李博昱,等.静电纺功能性纳米纤维材料的研究现状[J].高分子材料科学与工程,2018,34(2):173-179.Yu Q,Liu C K,Li B Y,et al.Research status for preparation of functional electrospun nanofibers[J].Polymer Materials Science & Engineering,2018,34(2):173-179.
    [2] Zhao H J,Ren X,Zhang Y,et al.Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials[J].Bio-medical Mater.Eng.,2015,26:89-94.
    [3] 李大为,何进,何凤利,等.丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J].中国生物工程杂志,2017,37(10):111-117.Li D W,He J,He F L,et al.Advances in application of silk fibroin/chitosan composite in tissue engineering[J].China Biotechnology,2017,37(10):111-117.
    [4] 王庆,李沉纹,李紫薇,等.静电纺丝制备聚维酮碘纳米纤维作为新型创面敷料的性能研究[J].重庆医科大学学报,2016,41(5):466-472.Wang Q,Li C W,Li Z W,et al.Properties of polyvinylpyrrolidone iodine electrostatic spinning nanofiber as new wound dressing[J].Journal of Chongqing Medical University,2016,41(5):466-472.
    [5] Cao H,Chen X,Huang L,et al.Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution[J].Mater.Sci.Eng.,C,2009,29:2270-2274.
    [6] Hang Y C,Zhang Y P,Shao H L,et al.Electrospinning of regenerated silk fibroin/sericin blend aqueous solutions[J].J.Funct.Mater.,2010,41:108-111.
    [7] 何素文.静电纺丝纳米纤维形态影响因素的分析与验证[D].上海:东华大学,2011.He S W.Analysis and verification on influencing factors of nanofiber morphology by electrospinning[D].Shanghai:Donghua University,2011.
    [8] 吴惠英,吴桂英,周燕,等.蚕丝在原纤水平的溶解及静电纺丝[J].高分子材料科学与工程,2016,32(11):102-108.Wu H Y,Wu G Y,Zhou Y,et al.Silk dissolved at fibril and its electrospinning[J].Polymer Materials Science & Engineering,2016,32(11):102-108.
    [9] Liu Z,Zhang F,Ming J F,et al.Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibers[J].J.Appl.Polym.Sci.,2015,132:DOI:10.1002/app.41236.
    [10] Zhou P,Xie X,Knight D P ,et al.Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid state NMR[J].Biochemistry 2004,43(35):11302-11311.
    [11] Zhang F,Lu Q,Ming J F,et al.Silk dissolution and regeneration at the nanofibril scale[J].J.Mater.Chem.,B,2014,2:3879-3885.
    [12] Rutledge G C,Frudrukh S V.Formation of fibers by electrospinning[J].Adv.Drug Deliv.Rev.,2007,59:1384-1391.
    [13] 乔玉洁,傅恭博,何中媛,等.聚己内酯/胶原/丝素复合微纳米纤维膜的制备[J].合成纤维,2017,46(4):47-51.Qiao Y J,Fu G B,He Z Y,et al.Preparation of polycaprolactone/collagen/silk fibroin composite micro-nanofibrous membranes[J].Synthetic Fiber in China,2017,46(4):47-51.
    [14] 杭怡春,张耀鹏,金媛,等.丝胶组分和高湿后处理对静电纺丝素纤维结构与性能的影响[J].高分子材料科学与工程,2012,28(4):62-65.Hang Y C,Zhang Y P,Jin Y,et al.Effect of silk sericin and high moisture treatment on the structure and properties of electrospun silk fibroin fibers[J].Polymer Materials Science & Engineering,2012,28(4):62-65.
    [15] Hu X,Kaplan D,Cebe P.Dynamic protein-water relationships during β-sheet formation[J].Macromolecules,2008,41:3939-3948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700