用户名: 密码: 验证码:
不同大分子乳化剂构建番茄红素纳米乳液的体外消化规律比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of in Vitro Digestion of Lycopene Nanoemulsions Stabilized with Different Macromolecular Emulsi?ers
  • 作者:洪泽翰 ; 吴婉仪 ; 李璐 ; 李雁 ; 解新安
  • 英文作者:HONG Zehan;WU Wanyi;LI Lu;LI Yan;XIE Xin'an;College of Food Science, South China Agricultural University;
  • 关键词:大分子乳化剂 ; 番茄红素 ; 纳米乳液 ; 体外消化
  • 英文关键词:macromolecular emulsifier;;lycopene;;nanoemulsion;;in vitro simulated digestion
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:华南农业大学食品学院;
  • 出版日期:2018-10-31 10:29
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.599
  • 基金:国家自然科学基金青年科学基金项目(31501471);; 广东省公益研究与能力建设项目(2015A020209107)
  • 语种:中文;
  • 页:SPKX201910001
  • 页数:7
  • CN:10
  • ISSN:11-2206/TS
  • 分类号:9-15
摘要
通过体外模拟消化,研究以辛烯基琥珀酸酯化(octenyl succinic anhydride,OSA)变性淀粉、乳清分离蛋白(whey protein isolate,WPI)、酪蛋白酸钠(sodium caseinate,SC)为乳化剂构建的番茄红素纳米乳液的消化规律。结果表明,消化过程中纳米乳液的液滴大小、Zeta电位和微观结构取决于乳化剂类型,OSA变性淀粉和蛋白质类乳化剂构建的纳米乳液分别在肠和胃阶段发生水解,液滴聚集,乳液平均粒径增大,同时Zeta电位绝对值达到最小。经胃肠消化后3种乳化剂构建的番茄红素纳米乳液游离脂肪酸释放率的大小排序为OSA变性淀粉(92.25%)>SC(86.53%)>WPI(79.88%),高于对照组的48.7%,表明纳米乳液包埋体系能有效改善番茄红素的消化特性,且以OSA变性淀粉构建的纳米乳液表现出比蛋白质类乳化剂更高的番茄红素生物利用率,达到(25.60±3.08)%。
        The in vitro digestion characteristics of lycopene nanoemulsions stabilized with three different emulsifiers:octenyl succinic anhydride(OSA)-modified starch, whey protein isolate(WPI) and sodium caseinate(SC) were studied.The results showed that the droplet size, zeta potential and microstructure of the nanoemulsions during digestion mainly depended on emulsifier type. Each nanoemulsion was digested in both simulated gastric and intestinal fluid, leading to droplet aggregation, increased emulsion droplet size and minimal zeta potential. The release rate of free fatty acid from these lycopene nanoemulsions followed the decreasing order: OSA-modified starch(92.25%) > SC(86.53%) > WPI(79.88%), which was higher than that(48.7%) of the control group. This indicates that the incorporation of lycopene into nanoemulsions could improve its digestion characteristics effectively. The nanoemulsions stabilized with OSA modified starch showed higher lycopene bioavailability(25.60 ± 3.08)% than those stabilized with protein emulsifiers.
引文
[1]张玉丹,杨阳,刘沐霖.番茄红素生产工艺研究进展[J].中国食物与营养,2016,22(4):38-41.DOI:10.3969/j.issn.1006-9577.2016.04.009.
    [2]刘国安,薛莹,马伟,等.番茄红素的抗氧化活性研究[J].西北师范大学学报(自然科学版):2016,52(2):89-94.DOI:10.16783/j.cnki.nwnuz.2016.02.018.
    [3]郑佳,何腊平,陈翠翠,等.纳米乳液在食品中的稳定性及其应用研究现状[J].山地农业生物学报,2018,37(1):61-68.DOI:10.15958/j.cnki.sdnyswxb.2018.01.011.
    [4]TAN T B,SHARIFFA Y N,ABAS F,et al.Producing a lycopene nanodispersion:formulation development and the effects of high pressure homogenization[J].Food Research International,2017,101(15):165-172.DOI:10.1016/j.foodres.2017.09.005.
    [5]李达鸿,李璐,解新安,等.OSA变性淀粉的乳化特性及其对纳米乳液构建影响的研究[J].食品工业科技,2017,38(1):59-64.DOI:10.13386/j.issn1002-0306.2017.01.003.
    [6]HO K K H Y,SCHRO?N K,MARTíN-GONZáLEZ M F S,et al.Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions[J].Food Hydrocolloids,2018,81(8):180-190.DOI:10.1016/j.foodhyd.2018.02.033.
    [7]AMIRI-RIGI A,ABBASI S.Microemulsion-based lycopene extraction:effect of surfactants,co-surfactantsand pretreatments[J].Food Chemistry,2016,197(8):1002-1007.DOI:10.1016/j.foodchem.2015.11.077.
    [8]HA T V A,KIM S,CHOI Y,et al.Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopeneenriched tomato extract[J].Food Chemistry,2015,178(13):115-121.DOI:10.1016/j.foodchem.2015.01.048.
    [9]OZTURK B,ARGIN S,OZILGEN M,et al.Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants:quillaja saponin and lecithin[J].Journal of Food Engineering,2014,142(12):57-63.DOI:10.1016/j.jfoodeng.2014.06.015.
    [10]SARIT P,MANN B,KUMAR R,et al.Preparation and characterization of nanoemulsion encapsulating curcumin[J].Food Hydrocolloids,2015,43(1):540-546.DOI:10.1016/j.foodhyd.2014.07.011.
    [11]刘灿灿,孙潇鹏,宋洪波.辛烯基琥珀酸淀粉酯研究现状[J].广东化工,2018,45(1):93-94.DOI:10.3969/j.issn.1007-1865.2018.01.044.
    [12]王艳斐.影响乳清分离蛋白和酪蛋白稳定的水包核桃油乳液稳定性因素研究[D].西安:陕西科技大学,2017.
    [13]AKEN G A V.Modelling texture perception by soft epithelial surfaces[J].Soft Matter,2010,6(5):826-834.DOI:10.1039/b916708k.
    [14]FERRUAM J,SINGH R P.Modeling the fluid dynamics in a human stomach to gain insight of food digestion[J].Journal of Food Science,2010,75(7):R151-R162.DOI:10.1111/j.1750-3841.2010.01748.x.
    [15]KONG F,SINGH R P.Disintegration of solid foods in human stomach[J].Journal of Food Science,2008,73(5):R67-R80.DOI:10.1111/j.1750-3841.2008.00766.x.
    [16]梁蓉,麻建国,钟芳.纳米乳液包埋技术在功能性食品中的研究进展[J].食品与生物技术学报,2013,32(6):561-568.DOI:10.3969/j.issn.1673-1689.2013.06.001.
    [17]陈翰.β-胡萝卜素纳米乳液的构建及其消化特性研究[D].无锡:江南大学,2015.
    [18]HUR S J,DECKER E A,MCCLEMENTS D J.Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion.[J].Food Chemistry,2009,114(1):253-262.DOI:10.1016/j.foodchem.2008.09.069.
    [19]HOF K H V H,WEST C E,WESTSTRATE J A,et al.Dietary factors that affect the bioavailability of carotenoids[J].Journal of Nutrition,2000,130(3):503-506.DOI:10.1093/jn/130.3.503.
    [20]SALVIATRUJILLO L,QIAN C,MARTíNBELLOSO O,et al.Influence of particle size on lipid digestion andβ-carotene bioaccessibility in emulsions and nanoemulsions[J].Food Chemistry,2013,141(2):1472-1480.DOI:10.1016/j.foodchem.2013.03.050.
    [21]MAHASUKHONTHACHAT K,SOPADE P A,GIDLEY M J.Kinetics of starch digestion in sorghum as affected by particle size[J].Journal of Food Engineering,2010,96(1):18-28.DOI:10.1016/j.jfoodeng.2009.06.051.
    [22]MOSCHAKIS T,MURRAY B S,DICKINSON E.Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum[J].Journal of Colloid and Interface Science,2005,284(2):714-728.DOI:10.1016/j.jcis.2004.10.036.
    [23]WOOSTER T J,LI D,XU M,et al.Impact of different biopolymer networks on the digestion of gastric structured emulsions[J].Food Hydrocolloids,2014,36(5):102-114.DOI:10.1016/j.foodhyd.2013.09.009.
    [24]李毅琳,胡敏予,瞿树林,等.番茄红素简便测定方法的应用与分析[J].食品科学,2007,28(3):268-270.DOI:10.3321/j.issn:1002-6630.2007.03.063.
    [25]MALAKIN A,WRIGHTA J,CORREDIGM.Im pact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models[J].Colloids and Surfaces B Biointerfaces,2011,83(2):321-330.DOI:10.1016/j.foodhyd.2013.09.009.
    [26]LI Y,MCCLEMENTS D J.New mathematical model for interpreting pH-stat digestion profiles:impact of lipid droplet characteristics on in vitro digestibility[J].Journal of Agricultural and Food Chemistry,2010,58(13):8085-8092.DOI:10.1021/jf101325m.
    [27]SARKAR A,GOH K K T,SINGH R P,et al.Behaviour of an oilin-water emulsion stabilized byβ-lactoglobulin in an in vitro gastric model[J].Food Hydrocolloids,2009,23(6):1563-1569.DOI:10.1016/j.foodhyd.2008.10.014.
    [28]LUNDIN L,GOLDING M.Structure design for healthy food[J].Australian Journal of Dairy Technology,2009,64(1):68-74.
    [29]BOREL P,ARMAND M,BERENGERE P M S,et al.Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat[J].Journal of Parenteral and Enteral Nutrition,1994,18(6):534-543.DOI:10.1177/0148607194018006534.
    [30]HELBIG A,SILLETTI E,TIMMERMAN E,et al.In vitro study of intestinal lipolysis using pH-stat and gas chromatography[J].Food Hydrocolloids,2012,28(1):10-19.DOI:10.1016/j.foodhyd.2011.11.007.
    [31]易江.蛋白质β-胡萝卜素纳米颗粒的制备和特性研究[D].无锡:江南大学,2015.
    [32]梁蓉.以OSA变性淀粉为乳化剂的纳米乳液制备及特性研究[D].无锡:江南大学,2013.
    [33]MCCLEMENTS D J,XIAO H.Potential biological fate of ingested nanoemulsions:influence of particle characteristics[J].Food&Function,2012,3(3):202-220.DOI:10.1039/c1fo10193e.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700