用户名: 密码: 验证码:
兰州市化石燃料燃烧源排放VOCs的臭氧及二次有机气溶胶生成潜势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation Potential of Ozone and Secondary Organic Aerosol of VOCs from Fossil Fuel Combustion in Lanzhou City
  • 作者:刘镇 ; 朱玉凡 ; 郭文凯 ; 刘晓 ; 陈强
  • 英文作者:LIU Zhen;ZHU Yu-fan;GUO Wen-kai;LIU Xiao;CHEN Qiang;Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University;
  • 关键词:化石燃料 ; 挥发性有机物(VOCs) ; 空间分布 ; 臭氧生成潜势(OFP) ; 二次有机气溶胶生成潜势(SOAFP)
  • 英文关键词:fossil fuel;;volatile organic compounds(VOCs);;spatial distribution;;ozone formation potential(OFP);;secondary organic aerosols formation potential(SOAFP)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:兰州大学大气科学学院半干旱气候变化教育部重点实验室;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:中央高校基本科研业务费专项(lzujbky-2017-kb02)
  • 语种:中文;
  • 页:HJKZ201905009
  • 页数:9
  • CN:05
  • ISSN:11-1895/X
  • 分类号:73-81
摘要
随着我国工业的快速发展和城市化进程的加快,化石燃料的大量使用造成了严重的二氧化硫、颗粒物和挥发性有机物(volatile organic compounds,VOCs)等大气污染.目前,对化石燃料燃烧排放挥发性有机物环境影响的研究较少,本文计算了兰州市化石燃料燃烧源排放VOCs及其相应的臭氧生成潜势(ozone formation potential,OFP)和二次有机气溶胶生成潜势(secondary organic aerosols formation potential,SOAFP),其中水泥制造业的OFP和SOAFP占比最大,分别为45. 3%、50. 9%;其次为砖瓦制造业,但其吨标煤燃烧排放VOCs的OFP和SOAFP值最高,折为吨标煤后天然气燃烧产生VOCs的O_3和SOA最小.兰州市主城区化石燃料燃烧源OFP和SOAFP主要为电力和热力的生产供应以及西固区工业企业排放VOCs的贡献,其它地区为水泥制造业、砖瓦制造业、钢铁冶炼业等高能耗的行业的贡献为主.芳香烃是化石燃料燃烧源排放VOCs中对OFP和SOAFP均贡献最大的一类物质,占比分别为40. 0%和67. 2%,并且在生成潜势贡献前10的物种中芳香烃为主要物种.与生物质燃烧源相比,化石燃料燃烧源具有较强的O_3和SOA生成能力(2. 58 t·t~(-1)和3. 16 kg·t~(-1)).
        With the rapid development of China's industry and the acceleration of urbanization,the massive use of fossil fuels has increased the concentration of air pollutants such as sulfur dioxide,particulate matter,and volatile organic compounds( VOCs) in the cities. However,there is little research on the environmental impact of volatile organic compounds from fossil fuel combustion emissions. In this paper,ozone formation potential( OFP) and secondary organic aerosol formation potential( SOAFP) of VOCs from fossil fuel combustion in Lanzhou city were calculated. The OFP and SOAFP of the cement industry were the largest,representing45. 3% and 50. 9%,respectively,followed by brick and tile industries. However,when the calculations were based on tons of standard coal equivalent,the largest contributors to OFP and SOAFP of VOCs emitted from combustion were the brick and tile industries,and the smallest was the natural gas industry. VOCs from fossil fuel combustion of power plants and industry enterprises in the Xigu District are the main contributors to the OFP and SOAFP in the urban district of Lanzhou city. The contribution rates of the aromatic hydrocarbons from fossil fuel to OFP and SOAFP account for 40. 0% and 67. 2%,respectively. Aromatic hydrocarbons are also the main component in the top 10 species that contribute to OFP and SOAFP. The mass ratio of OFP and SOAFP per VOCs from fossil fuel combustion( 2. 58 t·t~(-1),3. 16 kg·t~(-1)) is larger than those from biomass combustion( 2. 22 t·t~(-1),1. 38 kg·t~(-1)).
引文
[1]Gaffney J S,Marley N A.The impacts of combustion emissions on air quality and climate-from coal to biofuels and beyond[J].Atmospheric Environment,2009,43(1):23-36.
    [2]吴兑.近十年中国灰霾天气研究综述[J].环境科学学报,2012,32(2):257-269.Wu D.Hazy weather research in China in the last decade:a review[J].Acta Scientiae Circumstantiae,2012,32(2):257-269.
    [3]Chan K L,Wang S S,Liu C,et al.On the summertime air quality and related photochemical processes in the megacity Shanghai,China[J].Science of the Total Environment,2017,580:974-983.
    [4]Atkinson R.Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12-14):2063-2101.
    [5]Yuan B,Hu W W,Shao M,et al.VOC emissions,evolutions and contributions to SOA formation at a receptor site in Eastern China[J].Atmospheric Chemistry and Physics,2013,13(17):8815-8832.
    [6]Wang H L,Jing S A,Lou S R,et al.Volatile organic compounds(VOCs)source profiles of on-road vehicle emissions in China[J].Science of the Total Environment,2017,607-608:253-261.
    [7]Li L Y,Chen Y,Zeng L M,et al.Biomass burning contribution to ambient volatile organic compounds(VOCs)in the ChengduChongqing Region(CCR),China[J].Atmospheric Environment,2014,99:403-410.
    [8]Wang H L,Lou S R,Huang C,et al.Source profiles of volatile organic compounds from biomass burning in Yangtze River Delta,China[J].Aerosol and Air Quality Research,2014,14(3):818-828.
    [9]Mo Z W,Shao M,Lu S H,et al.Process-specific emission characteristics of volatile organic compounds(VOCs)from petrochemical facilities in the Yangtze River Delta,China[J].Science of the Total Environment,2015,533:422-431.
    [10]Jia C H,Mao X X,Huang T,et al.Non-methane hydrocarbons(NMHCs)and their contribution to ozone formation potential in a petrochemical industrialized city,northwest China[J].Atmospheric Research,2016,169:225-236.
    [11]Bo Y,Cai H,Xie S D.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J].Atmospheric Chemistry and Physics,2008,8(23):7297-7316.
    [12]Wang M,Shao M,Lu S H,et al.Evidence of coal combustion contribution to ambient VOCs during winter in Beijing[J].Chinese Chemical Letters,2013,24(9):829-832.
    [13]Yan Y L,Lin P,Li R M,et al.Concentration,ozone formation potential and source analysis of volatile organic compounds(VOCs)in a thermal power station centralized area:a study in Shuozhou,China[J].Environmental Pollution,2017,223:295-304.
    [14]夏思佳,刘倩,赵秋月.江苏省人为源VOCs排放清单及其对臭氧生成贡献[J].环境科学,2018,39(2):592-599.Xia S J,Liu Q,Zhao Q Y.Emission inventory of anthropogenically sourced VOCs and its contribution to ozone formation in Jiangsu Province[J].Environmental Science,2018,39(2):592-599.
    [15]韩丽,王幸锐,何敏,等.四川省典型人为污染源VOCs排放清单及其对大气环境的影响[J].环境科学,2013,34(12):4535-4542.Han L,Wang X R,He M,et al.Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan Province[J].Environmental Science,2013,34(12):4535-4542.
    [16]岳立.兰州市大气污染治理的经济学分析[D].兰州:兰州大学,2011.Yue L.An economic analysis on control of air pollution in Lanzhou City[D].Lanzhou:Lanzhou University,2011.
    [17]张凯,于周锁,高宏,等.兰州盆地人为源大气污染物网格化排放清单及其空间分布特征[J].环境科学学报,2017,37(4):1227-1242.Zhang K,Yu Z S,Gao H,et al.Gridded emission inventories and spatial distribution characteristics of anthropogenic atmospheric pollutants in Lanzhou valley[J].Acta Scientiae Circumstantiae,2017,37(4):1227-1242.
    [18]中华人民共和国环境保护部.大气挥发性有机物源排放清单编制技术指南(试行)[EB/OL].http://www.mee.gov.cn/gkml/hbb/bgg/201408/t20140828_288364.htm,2014-08-20.
    [19]Shi J W,Deng H,Bai Z P,et al.Emission and profile characteristic of volatile organic compounds emitted from coke production,iron smelt,heating station and power plant in Liaoning Province,China[J].Science of the Total Environment,2015,515-516:101-108.
    [20]Stockwell C E,Christian T J,Goetz J D,et al.Nepal ambient monitoring and source testing experiment(NAMa STE):emissions of trace gases and light-absorbing carbon from wood and dung cooking fires,garbage and crop residue burning,brick kilns,and other sources[J].Atmospheric Chemistry and Physics,2016,16(17):11043-11081.
    [21]U.S.Environmental Protection Agency(U.S.EPA).SPECIATE version 4.5 through 4.0[EB/OL].https://www.epa.gov/air-emissions-modeling/speciate-version-45-through-40,2016-09.
    [22]卢学强,韩萌,冉靓,等.天津中心城区夏季非甲烷有机化合物组成特征及其臭氧产生潜力分析[J].环境科学学报,2011,31(2):373-380.Lu X Q,Han M,Ran L,et al.Characteristics of nonmethane organic compounds and their ozone formation potentials in downtown Tianjin in summer[J].Acta Scientiae Circumstantiae,2011,31(2):373-380.
    [23]Lam S H M,Saunders S M,Guo H,et al.Modelling VOCsource impacts on high ozone episode days observed at a mountain summit in Hong Kong under the influence of mountain-valley breezes[J].Atmospheric Environment,2013,81:166-176.
    [24]Carter W L P.Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales[R].California:University of California,2010.
    [25]Zheng J Y,Shao M,Che W W,et al.Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta,China[J].Environmental Science&Technology,2009,43(22):8580-8586.
    [26]徐敬,马建中.北京地区有机物种人为源排放量及O3生成潜势估算[J].中国科学:化学,2013,43(1):104-115.Xu J,Ma J Z.Estimation of anthropogenic emissions and ozone formation potential of speciated VOCs in Beijing area[J].Scientia Sinica Chimica,2013,43(1):104-115.
    [27]Carter W P L.Development of ozone reactivity scales for volatile organic compounds[J].Journal of the Air&Waste Management Association,1994,44(7):881-899.
    [28]Carter W P L.Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[R].Sacramento,California:California Air Resources Board,2010.
    [29]Turpin B J,Huntzicker J J,Larson S M,et al.Los Angeles summer midday particulate carbon:primary and secondary aerosol[J].Environmental Science&Technology,1991,25(10):1788-1793.
    [30]Weber R J,Sullivan A P,Peltier R E,et al.A study of secondary organic aerosol formation in the anthropogenicinfluenced southeastern United States[J].Journal of Geophysical Research:Atmosphere,2007,112(D13):D13302,doi:10.1029/2007jd008408.
    [31]Barthelmie R J,Pryor S C.Secondary organic aerosols:formation potential and ambient data[J].Science of the Total Environment,1997,205(2-3):167-178.
    [32]Grosjean D.In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J].Atmospheric Environment.Part A.General Topics,1992,26(6):953-963.
    [33]Grosjean D,Seinfeld J H.Parameterization of the formation potential of secondary organic aerosols[J].Atmospheric Environment,1989,23(8):1733-1747.
    [34]林旭,朱彬,安俊琳,等.南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J].中国环境科学,2015,35(4):976-986.Lin X,Zhu B,An J L,et al.Potential contribution of secondary organic aerosols and ozone of VOCs in the northern suburb of Nanjing[J].China Environmental Science,2015,35(4):976-986.
    [35]陈小方,张嘉妮,张伟霞,等.化工园区挥发性有机物排放清单及其环境影响[J].中国环境科学,2017,37(11):4062-4071.Chen X F,Zhan J N,Zhang W X,et al.VOCs emission inventory of a chemical industry park and its influence on atmospheric environment[J].China Environmental Science,2017,37(11):4062-4071.
    [36]GB/T 2589-2008,综合能耗计算通则[S].GB/T 2589-2008,General principles for calculation of the comprehensive energy consumption[S].
    [37]杨笑笑,汤莉莉,胡丙鑫,等.南京城区夏季大气VOCs的来源及对SOA的生成研究---以亚青和青奥期间为例[J].中国环境科学,2016,36(10):2896-2902.Yang X X,Tang L L,Hu B X,et al.Sources apportionment of volatile organic compounds VOCs in summertime Nanjing and their potential contribution to secondary organic aerosols(SOA)[J].China Environmental Science,2016,36(10):2896-2902.
    [38]虞小芳,程鹏,古颖纲,等.广州市夏季VOCs对臭氧及SOA生成潜势的研究[J].中国环境科学,2018,38(3):830-837.Yu X F,Cheng P,Gu Y G,et al.Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou[J].China Environmental Science,2018,38(3):830-837.
    [39]郭文凯,刘镇,刘文博,等.兰州生物质燃烧VOCs排放特征及其大气环境影响[J].中国环境科学,2019,39(1):40-49.Guo W K,Liu Z,Liu W B,et al.The characteristics of VOCs emission from biomass burning and its influence on atmospheric environment in Lanzhou City[J].China Environmental Science,2019,39(1):40-49.
    [40]刘晓,陈强,郭文凯,等.移动源排放VOCs特征及臭氧生成潜势研究---以兰州市为例[J].环境科学学报,2018,38(8):3220-3228.Liu X,Chen Q,Guo W K,et al.Emission characteristics and ozone formation potential of VOCs from mobile sources:a pilot study in Lanzhou[J].Acta Scientiae Circumstantiae,2018,38(8):3220-3228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700