用户名: 密码: 验证码:
PAN基高模量碳纤维成型过程中的结构性能关联性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between micro-structure and macro-properties during the formation of PAN-based high modulus carbon fibers
  • 作者:钱鑫 ; 王雪飞 ; 郑凯杰 ; 张永刚 ; 李德宏 ; 宋书林
  • 英文作者:QIAN Xin;WANG Xuefei;ZHENG Kaijie;ZHANG Yonggang;LI Dehong;SONG Shulin;National Engineering Laboratory for Carbon Fiber Preparation, Ningbo Institute of Material Technology & Engineering,Chinese Academy of Sciences;
  • 关键词:聚丙烯腈 ; 高模碳纤维 ; 石墨结构 ; 层间距
  • 英文关键词:polyacrylonitrile;;high modulus carbon fiber;;graphite structure;;interlayer spacing
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国科学院宁波材料技术与工程研究所碳纤维制备技术国家工程实验室;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.332
  • 基金:装备发展部领域基金重点项目(6140922010103);; 中科院创新基金(CXJJ-17-M160);中科院先导专项(XDA17020405)
  • 语种:中文;
  • 页:HGJZ201905024
  • 页数:8
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:217-224
摘要
以实验室自制T800级聚丙烯腈(PAN)基高强中模碳纤维为原料,经连续石墨化处理得到M50J级、M55J级高模量碳纤维,以X射线衍射(XRD)、Raman光谱为表征手段研究了高强碳纤维向高模量碳纤维转变过程中石墨微晶、取向、微孔含量、石墨化度等石墨特征结构的演变规律,并开展了PAN基碳纤维石墨特征结构与力学性能的关联性研究。研究结果表明:在高强碳纤维向高模量碳纤维转变过程中,随着石墨微晶层间距d_(002)的下降以及石墨微晶堆砌厚度Lc的增加,碳纤维的拉伸模量逐渐提升;石墨微晶层间距和微晶取向是影响碳纤维拉伸强度的两个主要因素,石墨微晶层间距d_(002)值增加、石墨微晶取向越高,纤维拉伸强度也越高;在高模量碳纤维的成型过程中,纤维内部微孔含量随着石墨化程度的提高而降低;经过高温石墨化处理后,碳纤维的拉伸强度会随着Raman光谱中无序结构D峰和石墨特征结构G峰积分强度比值I_D/I_G的下降而下降。
        M50 J and M55 J grade high modulus carbon fibers were prepared by using carbon fiber of selfmade T800 grade polyacrylonitrile(PAN)-based high strength carbon fibers as raw material. In the conversion of high strength carbon fiber to high modulus carbon fiber, the evolution of graphite characteristic features such as microcrystallites, orientation, the relative content of micropore and graphitization degree were investigated by X-ray diffractometer(XRD) and Raman. The relationship between the graphite characteristic features and the mechanical properties of carbon fiber was also studied in detail. Results showed that with decreases in the value of interlayer spacing d_(002) and increases in the value of graphite thickness L_c, the tensile modulus of carbon fibers were significantly increased. It was also found that the interlayer spacing and crystallite orientation were two important parameters which could affect the tensile strength of high modulus carbon fiber. The tensile strength increased with increasing d_(002) value and improving crystallite orientation. In the conversion of high strength carbon fiber to high modulus carbon fiber, increased graphitization degree took place which led to decreases in voids or cavities. After high temperature graphitization, decreases in the tensile strength of carbon fiber were accompanied with decrease in the intensity ratio of disordered induced D-band to the graphite structure G-band.
引文
[1]VENNER J G.Carbon and graphite fibers.Kirk-othmer encyclopedia of chemical technology[M].New Jersey:John Wiley ans Sons.Inc.,2000.
    [2]韩赞,张学军,田艳红,等.PAN基高模量碳纤维微观结构研究[J].航天返回与遥感,2010,31(5):65-71.HAN Zan,ZHANG Xuejun,TIAN Yanhong,et al.Microstructure of PAN-based high modulus carbon fibers[J].Space Craft Recovery&Remote Sensing,2010,31(5):65-71.
    [3]钱鑫,张永刚,王雪飞.高温石墨化对碳纤维结构的影响[J].高科技纤维及应用,2016,41(2):24-27.QIAN Xin,ZHANG Yonggang,WANG Xuefei.Effect of hightemperature graphitization on the structure of carbon fibers[J].HiTech Fiber and Application,2016,41(2):24-27
    [4]张永刚,钱鑫,王雪飞.低温石墨化对碳纤维性能的影响[J].高科技纤维及应用,2016,41(2):28-31.ZHANG Yonggang,QIAN Xin,WANG Xuefei.Effect of lowtemperature graphitization on the properties of carbon fibers[J].HiTech Fiber and Application,2016,41(2):28-31.
    [5]乔伟静,田艳红,张学军.国产聚丙烯腈基高强高模碳纤维电化学氧化表面处理工艺[J].复合材料学报,2018,35(9):2449-2457.QIAO Weijing,TIAN Yanhong,ZHANG Xuejun.Electrochemical oxidation surface treatment of domestic polyacrylonitrile-based high strength and high modulus carbon fiber[J].Acta Materiae Compositae Sinica,2018,35(9):2449-2457.
    [6]HUANG Y,YOUNG R J.Effect of fibre microstructure upon the modulus of PAN-and pitch-based carbon fibres[J].Carbon,1995,33(2):97-107.
    [7]ZHANG W,JIE L,GANG W.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J].Carbon,2003,41(14):2805-2812.
    [8]FRANK E,INGILDEEV D,BUCHMEISER M R.Structure and properties of high-performance fiberss[M].Cambridge:Wood Head Publishing Ltd.,2017,7-30.
    [9]MIKHAILOVA V A,SAVOST'YANOVA N A,BONDARENKO N V,et al.High-modulus,high-strength carbon fibre based on polyacrylonitrile[J].Fibre Chemistry,1992,23(3):186-188.
    [10]DEURBERGUE A,OBERLIN A.TEM study of some recent high modulus PAN-based carbon fibers[J].Carbon,1992,30(7):981-987.
    [11]GUIGON M,OBERLIN A,DESARMOT G.Microtexture and structure of some high-modulus,PAN-base carbon fibres[J].Fibre Science and Technology,1984,20(3):177-198.
    [12]OGALE A A,LIN C,ANDERSON D P,et al.Orientation and dimensional changes in mesophase pitch-based carbon fibers[J].Carbon,2002,40(8):1309-1319.
    [13]LOIDL D,PARIS O,RENNHOFER H,et al.Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers[J].Carbon,2007,45(14):2801-2805.
    [14]BARNET F R,NORR M K.A three-dimensional structural model for a high modulus PAN-based carbon fibre[J].Composites,1976,7(2):93-99.
    [15]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:277-278.HE Fu.Carbon fiber and graphite fiber[M].Beijing:Chemical Industry Press,2010:277-278.
    [16]TUINSTRA F,KOENIG J L.Raman spectrum of graphite[J].Journal of Chemical Physics,1970,53(3):1126-1130.
    [17]ROBINSON I M,ZAKIKHANI M,DAY R J,et al.Strain dependence of the Raman frequencies for different types of carbon fibres[J].Journal of Materials Science Letters,1987,6(10):1212-1214.
    [18]GALIOTIS C,BATCHELDER D N.Strain dependences of the firstand second-order Raman spectra of carbon fibres[J].Journal of Materials Science Letters,1988,7(5):545-547.
    [19]SADEZKY A,MUCKENHUBER H,GROTHE H,et al.Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J].Carbon,2005,43(8):1731-1742.
    [20]JAWHARI T,ROID A,CASADO J.Raman spectroscopic characterization of some commercially available carbon black materials[J].Carbon,1995,33(11):1561-1565.
    [21]DENNISON J R,HOLTZ M,SWAIN G.Raman spectroscopy of carbon materials[J].Spectroscopy,1996,11(8):38-45.
    [22]CUESTA A,DHAMELINCOURT P,LAUREYNS J,et al.Raman microprobe studies on carbon materials[J].Carbon,1994,32(8):1523-1532.
    [23]韩赞,张学军,田艳红,等.石墨化温度对PAN基高模量碳纤维微观结构的影响[J].化工进展,2011,30(8):1805-1808.HAN Zan,ZHANG Xuejun,Tian Yanhong,et al.Effect of graphitization temperature on microstructure of PAN-based high modulus graphite fibers[J].Chemical Industry and Engineering Progress,2011,30(8):1805-1808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700