用户名: 密码: 验证码:
Acidithiobacillus ferrooxidans对软锰矿浸出的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Acidithiobacillus ferrooxidans on pyrolusite bioleaching
  • 作者:康金星 ; 冯雅丽 ; 李浩 ; 杜竹玮 ; 邓祥意 ; 王洪君
  • 英文作者:KANG Jin-xing;FENG Ya-li;LI Hao-ran;DU Zhu-wei;DENG Xiang-yi;WANG Hong-jun;School of Civil and Resource Engineering,University of Science and Technology Beijing;Institute of Process Engineering,Chinese Academy of Sciences;
  • 关键词:软锰矿 ; Acidithiobacillus ; ferrooxidans ; 浸出 ; 电化学腐蚀 ; 电荷转移 ; 半导体
  • 英文关键词:pyrolusite;;Acidithiobacillus ferrooxidans;;electrochemical corrosion;;charge transfer;;semiconductor
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学土木与资源工程学院;中国科学院过程工程研究所;
  • 出版日期:2019-04-18 10:18
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.301
  • 基金:国家自然科学基金资助项目(20176026,20176242);; 国家水体污染控制与治理科技重大专项资助项目(2015ZX07205-003);; 中国大洋矿产资源研究计划资助项目(DY125-15-T-08)
  • 语种:中文;
  • 页:BJKD201905005
  • 页数:9
  • CN:05
  • ISSN:10-1297/TF
  • 分类号:48-56
摘要
利用循环伏安、交流阻抗谱和极化曲线研究了Acidithiobacillus ferrooxidans对软锰矿在模拟浸出溶液(9K基础培养基,A. ferrooxidans,Fe(Ⅲ),A. ferrooxidans+Fe(Ⅲ))中电化学腐蚀行为的影响;利用模拟有菌/无菌浸出溶液中钝化膜的Mott-Schottky理论比较了有无细菌存在情况下形成的钝化膜的优劣性.结果表明,A. ferrooxidans促进MnO2/Mn2+氧化还原转化,催化MnO2/Mn(OH)2电极反应;加速软锰矿/溶液界面电子交换,无铁存在时A. ferrooxidans使电荷转移内阻降低34%,比含Fe(Ⅲ)无菌体系低11%;引起软锰矿电极极化,增强其氧化活性;加速MnO2向MnO·OH转化及其产物扩散. A. ferrooxidans与软锰矿作用更倾向于间接作用机理.在选取的各模拟电解液(pH值为2. 0)中,0. 2~0. 4 V区间内软锰矿形成耗尽层,在模拟浸出溶液中形成的钝化膜都表现出p-n-p-n型半导体性能.在选取的0. 2 V极化电位下,无铁时引入A. ferrooxidans使膜中的施主/受主密度减少,细菌含有多种基团参与半导体/溶液界面电子转移反应,接受界面间自由电子或填充空穴,促使软锰矿与溶液界面物质交换变频繁;含铁溶液中加入A. ferrooxidans使得钝化膜受主/施主密度增大,A. ferrooxidans降低了膜的耐腐蚀性,因而促进软锰矿浸出.
        Biohydrometallurgy is an increasingly popular ore extraction technology and is especially applicable for low-grade ores.In particular,Acidithiobacillus ferrooxidans(A. ferrooxidans) is by far the most widely used bioleaching microorganism for leaching ores,including for sulfide ores and manganese dioxide ores. At present,many works are focused on the vital facilitating role of A. ferrooxidans in the cycles of sulfur and iron for sulfide ores bioleaching. However,research on the effect of A. ferrooxidans on manganese dioxide ores leaching is limited. The effects of A. ferrooxidans on the electrochemistry behavior of pyrolusite in simulated solutions(9 K basic medium,A. ferrooxidans,Fe(Ⅲ),A. ferrooxidans + Fe(Ⅲ)) were investigated using cyclic voltammetry,electrochemical impedance spectroscopy(EIS),and potentiodynamic polarization. Mott-Schottky curves were utilized to determine the passive film formed on the surface of pyrolusite ore in the presence or absence of bacteria bath solutions. The results show that A. ferrooxidans promotes the redox of MnO2/Mn2 +and triggers the reaction of MnO2/Mn(OH)2. A. ferrooxidans accelerates electron exchange between pyrolusite and solution; in the A. ferrooxidans-simulated solution,the charge-transfer reaction resistance of manganese dioxide is 34%lower than that of the control(9 K) and 11% lower than that of the Fe(Ⅲ) solution. Germs cause polarization of pyrolusite,leading to an increase in oxidative activity of manganese dioxide. Bacteria facilitate the transformation of MnO2 to MnO·OH and is beneficial to its diffusion. The indirect action mechanism is adopted to explain the interaction between A. ferrooxidans and pyrolusite. The passive films formed in simulated solutions exhibit p-n-p-n type semiconductor properties at the polarization potential of 0. 2 V when pH is 2. 0,and the depletion layer of pyrolusite appears between 0. 2 and 0. 4 V. Introducing A. ferrooxidans to the Fe(Ⅲ)-free solution decreases the donor density and the acceptor density because bacteria contain a variety of groups involved in electron transfer,which accept free electrons or fill holes,prompting the exchange of species between manganese oxide and solution. Admixing A. ferrooxidans to Fe(Ⅲ)-containing solution increases carrier density,reducing the corrosion resistance of membrane. The corrosion rate of pyrolusite increases with the addition of A. ferrooxidans.
引文
[1] Li C Q,Tian Z P,Cao J,et al. An application of manganese ore in non-metallurgy. China's Manganese Ind,2016,34(6):91(李超群,田宗平,曹健,等.锰矿石在非冶金工业领域中的应用.中国锰业,2016,34(6):91)
    [2] Fu Y,Xu Z G,Pei H X,et al. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica,2014,88(12):2192(付勇,徐志刚,裴浩翔,等.中国锰矿成矿规律初探.地质学报,2014,88(12):2192)
    [3] He F,Chen H F,Chen G,et al. A new technology of low grade pyrolusite ore in reduction process. China's Manganese Ind,2017,35(6):94(和飞,陈沪飞,陈菓,等.低品位软锰矿还原新技术和研究进展.中国锰业,2017,35(6):94)
    [4] Li Z G,Chen W L,Zhang J J,et al. Reductive leaching technology of pyrolusite optimized by response surface methodology. Chem Eng China,2018,46(2):72(李照刚,陈为亮,张建军,等.响应曲面法优化软锰矿还原浸出的工艺.化学工程,2018,46(2):72)
    [5] Hu K J. Study on Breeding of Alkalophilic Bacteria for Bioleaching of Complex Oxidized Copper Ore and Leaching Mechanism[Dissertation]. Beijing:University of Science and Technology Beijing,2017(胡凯建.复杂氧化铜矿碱性浸矿菌种的选育及浸出规律研究[学位论文].北京:北京科技大学,2017)
    [6] Huang M Q. Rules of Air Flow and Enhanced Leaching Mechanism by Forced Aeration in Heap Bioleaching of Copper Sulfides[Dissertation]. Beijing:University of Science and Technology Beijing,2015(黄明清.硫化铜矿生物堆浸气体渗流规律及通风强化浸出机制[学位论文].北京:北京科技大学,2015)
    [7] Qi F J,Feng Y L,Li H R,et al. Leaching characteristics and recovery method of nickel from low-grade nickel pyrrhotite. J Univ Sci Technol Beijing,2011,33(9):1065(齐凤杰,冯雅丽,李浩然,等.低品位镍磁黄铁矿镍浸出特性及回收方法.北京科技大学学报,2011,33(9):1065)
    [8] Peng Z J,Yu R L,Qiu G Z,et al. Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. Trans Nonf errous Met Soc China,2013,23(3):812
    [9] Choi N C,Cho K H,Kim B J,et al. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching. Int J Miner Metall Mater,2018,25(3):262
    [10] Núez-Ramírez D M,Solís-Soto A,López-Miranda J,et al. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila,Mexico. Int J Miner Metall Mater,2011,18(5):523
    [11] Cheng F F,Guan J F,Zhang F,et al. A research status of manganese ore chemical processing. China's Manganese Ind,2015,33(4):4(程飞飞,管俊芳,张帆,等.锰矿化学选矿的研究现状.中国锰业,2015,33(4):4)
    [12] Zhong H F,Cai W L,Li Y Q. Bacterial leaching of manganese ores and semi-industrial scale practice. Acta Microbiol Sinica,1990,30(3):228(钟慧芳,蔡文六,李雅芹.细菌浸锰及其半工业性试验.微生物学报,1990,30(3):228)
    [13] Guo Y,Zhang D Q,Cao L H,et al. Pyrolusite leaching with different stage of leachate from bio-leaching of different grade pyrites. Min Metall Eng,2016,36(5):76(郭盈,张德强,曹丽华,等.不同品质黄铁矿-生物浸出液制剂浸出软锰矿研究.矿冶工程,2016,36(5):76)
    [14] Liu X R,Jiang S C,Liu Y J,et al. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution. Int J Miner Metall Mater,2013,20(10):925
    [15] Fu K B,Lin H,Mo X L,et al. Study on bioleaching of different types of chalcopyrite. J Univ Sci Technol Beijing,2011,33(7):806(傅开彬,林海,莫晓兰,等.不同类型黄铜矿的生物浸出研究.北京科技大学学报,2011,33(7):806)
    [16] Qu B,Deng L,Deng B,et al. Oxidation kinetics of dithionate compound in the leaching process of manganese dioxide with manganese dithionate. React Kinet Mech Catal,2018,123(2):743
    [17] Nazari B,Jorjani E,Hani H,et al. Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria.Trans Nonferrous Met Soc China,2014,24(4):1152
    [18] Chabre Y,Pannetier J. Structural and electrochemical properties of the proton/γ-MnO2system. Prog Solid State Chem,1995,23(1):1
    [19] Senanayake G. Acid leaching of metals from deep-sea manganese nodules———a critical review of fundamentals and applications.Miner Eng,2011,24(13):1379
    [20] Walanda D K,Lawrance G A,Donne S W. Hydrothermal MnO2:synthesis,structure,morphology and discharge performance. J Power Sour,2005,139(1-2):325
    [21] Li C T,Cheng X Q,Dong C F,et al. Influence of Cl-on the corrosion electrochemical behavior of Alloy 690. J Univ Sci Technol Beijing,2011,33(4):444(李成涛,程学群,董超芳,等. Cl-对690合金腐蚀电化学行为的影响.北京科技大学学报,2011,33(4):444)
    [22] Luo J,Wang Y,Jiang J B,et al. Electrochemistry behavior of rebars with different grain size and Mott-Schottky research of passive films. Acta Chim Sinica,2012,70(10):1213(罗检,王毅,蒋继波,等.不同晶粒度螺纹钢的电化学行为及其钝化膜的Mott-Schottky研究.化学学报,2012,70(10):1213)
    [23] Zhang J Q. Electrochemical Measurement Technology. Beijing:Chemical Industry Press,2010(张鉴清.电化学测试技术.北京:化学工业出版社,2010)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700