用户名: 密码: 验证码:
海底天然气水合物水力提升系统参数和提升性能作用规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Law of system parameters and lifting performance in marine gas hydrate hydraulic lifting system
  • 作者:徐海良 ; 胡文港 ; 杨放琼
  • 英文作者:XU Hailaing;HU Wengang;YANG Fangqiong;School of Mechanical and Electrical Engineering,Central South University;State Key Laboratory of High Performance Complex Manufacturing,Central South University;
  • 关键词:天然气水合物 ; 绞吸式 ; 切削头 ; 破碎量 ; 模拟仿真
  • 英文关键词:gas hydrates;;cutter suction;;cutting head;;crushing;;analog simulation
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中南大学机电工程学院;中南大学高性能复杂制造复杂制造国家重点实验室;
  • 出版日期:2019-04-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.296
  • 基金:国家自然科学基金资助项目(51775561);; 湖南省自然科学基金资助项目(2018JJ2522)~~
  • 语种:中文;
  • 页:ZNGD201904011
  • 页数:8
  • CN:04
  • ISSN:43-1426/N
  • 分类号:91-98
摘要
运用MATLAB软件分析天然气水合物水力提升系统水力损失、矿浆泵扬程与系统中固相体积分数、系统流量、颗粒粒径、管道直径之间的理论关系;建立绞刀头工作三维流场模型,运用计算流体力学理论和Fluent仿真软件对绞刀头工作区域内固液两相流场进行数值模拟,比较不同工作参数下流场出口和入口固相质量的比值达到95%时所需的绞吸流量。研究结果表明:当绞吸流量为1 000~1 300 m~3/h时,切削头绞吸效率最高,在该区间内,绞刀大环外径的分布范围为0.9~1.0 m,绞刀横移速度分布范围为0.07~0.11 m/s。
        The MATLAB software was used to analyze the theory relationship between the hydraulic loss, the lift of the slurry pump of the hydraulic lifting system for natural gas hydrate and the transmission parameters of the system, such as solid-phase volume, concentration system flow, particle size and pipe diameter. A three-dimensional flow field model of cutting head was established, the computational fluid dynamics theory and Fluent simulation software were employed to simulate the solid-liquid two-phase flow field in the working area of the cutting head, and the cutter-suction flow which made the ratio of solid phase mass between outlet and inlet is 95% with different work parameters was compared. The results show that the cutting head has the highest efficiency when the suction flow rate is 1 000-1 300 m~3/h. In this interval, the distribution range of reamer big ring outside diameter is 0.9-1.0 m, and the distribution range of traverse speed for cutter is 0.07-0.11 m/s.
引文
[1]RAJNAUTH J,BARRUFET M.Monetizing gas:focusing on developments in gas hydrate as a mode of transportation[J].Energy Science and Technology,2012,4(2):61-68.
    [2]MOHEBBI V,BEHBAHANI R M.Experimental study on gashydrate formation from natural gas mixture[J].Journal of Natural Gas Science&Engineering,2014,18:47-52.
    [3]MAKOGON Y F.Natural gas hydrates-a promising source ofenergy[J].Journal of Natural Gas Science and Engineering,2010,2(1):49-59.
    [4]思娜,安雷,邓辉,等.天然气水合物开采技术研究进展及思考[J].中国石油勘探,2016,21(5):52-61.SI Na,AN Lei,DENG Hui,et al.Discussion on natural gas hydrate production technologies[J].China Petroleum Exploration,2016,21(5):52-61.
    [5]吴传芝,赵克斌,孙长青,等.天然气水合物开采研究现状[J].地质科技情报,2008,27(1):47-51.WU Chuanzhi,ZHAO Kebin,SUN Changqing,et al.Currentresearch in natural gas hydrate production[J].Geological Scienceand Technology Information,2008,27(1):47-51.
    [6]LEE S,LEE Y,LEE J,et al.Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter[J].Environmental science&Technology,2013,47(22):13184-13190.
    [7]徐纯刚,李小森,蔡晶,等.二氧化碳置换法模拟开采天然气水合物的研究进展[J].化工学报,2013,64(7):2309-2315.XU Chungang,LI Xiaosen,CAI Jin,et al.Advance onsimulation exploitation of natural gas hydrate by replacementwith CO2[J].Journal of Chemical Industry and Engineering.2013,64(7):2309-2315.
    [8]ZENG Yicong,XU Hailiang,WU Wanrong,et al.Research on mining method of submarine natural gas hydrates based on a double-channel lift pump[J].Advanced Materials Research,2012,569:509-516.
    [9]LI Li,XU Hailiang,YANG Fangqiong.Three-phase flow of submarine gas hydrate pipe transport[J].Journal of Central South University,2015,22(9):3650-3656.
    [10]徐海良,陈旺,吴波,等.海底天然气水合物绞吸式开采切削头绞吸特性[J].四川大学学报(工程科学版),2016,48(6):126-131.XU Hailiang,CHEN Wang,WU Bo,et al.Characteristic of cutting head in marine gas hydrate by cutter suction exploitation[J].Journal of Sichuan University(Engineering Science Edition),2016,48(6):126-131.
    [11]CHRISTIAN F I,SANTIAGO M S,ALDO T B.A cost perspective for long distance ore pipeline water and energy utilization.part II:effect of input parameter variability[J].International Journal of Mineral Processing,2013,122:54-58.
    [12]VAN WIJK J M,TALMON A M,VAN RHEE C.Stability of vertical hydraulic transport processes for deep ocean mining:an experimental study[J].Ocean Engineering,2016,125:203-213.
    [13]邱灏,曹斌,夏建新.粗颗粒物料管道水力输送不淤临界流速计算[J].水利水运工程学报,2016(6):103-108.QIU Hao,CAO Bin,XIA Jianxin.Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline[J].Hydro-Science and Engineering,2016(6):103-108.
    [14]黄中华,曹跃,谢雅.多金属硫化物颗粒水力提升性能仿真[J].机械设计与研究,2015,31(2):85-88.HUANG Zhonghua,CAO Yue,XIE Ya.Simulation of hydraulic lifting performance of polymetallic sulfide particles[J].Machine Design and Research,2015,31(2):85-88.
    [15]杨桢毅.绞吸式挖泥船绞刀结构与性能优化研究[D].武汉:武汉理工大学能源与动力工程学院,2010:18-23.YANG Zhenyi.The research of structure and performance optimization of cutter on cutter-suction dredge[D].Wuhan:Wuhan University of Technology.School of Energy and Power Engineering,2010:18-23.
    [16]杨放琼,陈奇,曾义聪,等.深海采矿矿浆泵的设计方法研究[J].合肥工业大学学报(自然科学版),2014,37(12):1413-1418.YANG Fangqiong,CHEN Qi,ZENG Yichong,et al.Rearch on design method of slurry pump for deep-sea mining[J].Journal of Hefei University of Technology(Science and Technology),2014,37(12):1413-1418.
    [17]杨康.深海采矿提升管系统优化研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2012:12-18.YANG Kang.Optimization study on pipeline of deep-sea mining system[D].Shanghai:Shanghai Jiaotong University.School of Naval Architecture,Ocean and Civil Engineering,2012:12-18.
    [18]武伟,刘少军,李流军.深海采矿升沉补偿系统海浪运动模拟平台及其运动控制[J].现代制造工程,2009,17(7):10-14.WU Wei,LIU Shaojun,LI Liujun.The single-freedom ship motion simulation platform and its control in heave compensation system for deep-sea mining[J].Modern Manufacturing Engineering,2009,17(7):10-14.
    [19]邹才能,赵群,陈建军,等.中国天然气发展态势及战略预判[J].天然气工业,2018,38(4):1-11.ZOU Caineng,ZHAO Qun,CHEN Jianjun,et al.Natural gas in China:development trend and strategic forecast[J].Natural Gas Industry,2018,38(4):1-11.
    [20]李艳,贾广成,刘少军.考虑流固耦合的深海采矿长输流硬管力学行为[J].中南大学学报(自然科学版),2016,47(11):3670-3676.LI Yan,JIA Guangcheng,LIU Shaojun.Mechanical characteristics on long lifting pipeline in deep-ocean mining considering fluid-structure interaction[J].Journal of Central South University(Science and Technology),2016,47(11):3670-3676.
    [21]XU Hailiang,ZHOU Gang,WU Bo,et al.Influence of wave and current on deep-sea mining transporting system[J].Journal of Central South University,2012,19(1):144-149.
    [22]YOON C H,PARK J M,KANG J S,et al.Shallow lifting test for the development of deep ocean mineral resources in Korea[J].Indian Journal of Medical Research,2011,72(3):619-624.
    [23]徐海良,胡文港,杨放琼.天然气水合物输送管道的压力损失规律[J].中南大学学报(自然科学版),2019,50(2):304-310.XU Hailiang,HU Wengang,YANG Fangqiong.Pressure loss of conveying pipeline of natural gas hydrate[J].Journal of Central South University(Science and Technology),2019,50(2):304-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700