用户名: 密码: 验证码:
基于PSHA的核电厂近断层抗震设计谱构建方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CONSTRUCTION METHOD OF THE NEAR FAULT SEISMIC DESIGN SPECTRUM FOR NUCLEAR POWER PLANTS BASED ON PROBABILISTIC SEISMIC HAZARD ANALYSIS
  • 作者:胡进军 ; 李琼林 ; 邬迪 ; 谢礼立
  • 英文作者:HU Jin-jun;LI Qiong-lin;WU Di;XIE Li-li;Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics,China Earthquake Administration;
  • 关键词:地震概率危险性分析 ; 核电厂 ; 近断层脉冲型地震动 ; 修正脉冲放大系数 ; 抗震设计谱
  • 英文关键词:probabilistic seismic hazard analysis;;nuclear power plant;;near-fault pulse-like ground motion;;pulse amplification coefficient;;seismic design spectrum
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:中国地震局工程力学研究所地震局地震工程与工程振动重点实验室;
  • 出版日期:2019-05-21
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金重点项目(51238012)
  • 语种:中文;
  • 页:GCLX201905020
  • 页数:8
  • CN:05
  • ISSN:11-2595/O3
  • 分类号:195-202
摘要
核电是一种高效、清洁的能源,随着核电厂未来向内陆区的发展,其可能会遭遇到近断层地震动的影响,但是目前我国核电厂抗震规范设计谱并未考虑近断层地震动。该文首先基于大量实际近断层脉冲型和相应无脉冲地震动记录,研究了脉冲对反应谱的放大效应,建立了修正的近断层脉冲放大系数模型;继而将地震动脉冲效应引入到近断层概率地震危险性分析中,并基于设定断层模型,给出了不同场地类型的一致危险性反应谱;通过对地震危险性结果的分解,分析了对场地最危险震级和距离,并将结果引入地震动衰减关系中得到设计谱,最后通过近断层脉冲放大系数对设计谱进行修正,得到考虑近断层脉冲效应的核电厂抗震设计谱。通过研究,建立了一种基于概率地震危险性分析框架下,考虑近断层脉冲型地震动的工程场地核电厂抗震设计谱的构建方法。
        Nuclear power is efficient and clean energy. The construction of inland nuclear power plants in the future needs to consider the near-fault effect of ground motions. However, the effect on the design spectrum of nuclear power plants in China has not been taken into account. Based on a large number of real ground motions including near-fault pulse-like and non-pulse records, the amplification effect of pulses on the acceleration spectrum is studied, and a modified near-fault pulse amplification coefficient model is established. The effect of near-fault pulse is then introduced into the probabilistic seismic hazard analysis, and the uniform hazard spectra are calculated for a scenario fault model. By decomposing the result of the seismic hazard analysis, the most dangerous earthquake magnitude and fault distance for a site are obtained. They are then used in the attenuation relation to calculate the design spectrum of the site. Finally, the design spectrum is modified by the near-fault pulse amplification coefficient, and the seismic design spectrum considering the near-fault pulse effect is obtained. The calculation method of the seismic design spectrum for nuclear power plant sites is provided in the framework of probabilistic seismic hazard analysis. The effect of near fault pulse-like ground motion is considered in this method.
引文
[1]环球网.日本敦贺核电站下方系活断层2号机或成废炉[N].http://world.huanqiu.com/exclusive/2013-05/3939681.html Huanqiu Network.The Japanese Tsuruga nuclear power station is on an active fault,machine No.2 may be abandoned[N].http://world.huanqiu.com/exclusive/2013-05/3939681.html.(in Chinese)
    [2]中新网.台湾核电厂邻近地壳断层废核争议持续多年[N].http://www.chinanews.com/tw/2011/03-25/2930405.shtml.Chinanews Network.The Taiwan nuclear power plant is close to the fault,and the dispute over the abandon of nuclear power plant continues for many years[N].http://www.chinanews.com/tw/2011/03-25/2930405.shtm l.(in Chinese)
    [3]胡进军,谢礼立.地震破裂的方向性效应相关概念综述[J].地震工程与工程振动,2011,31(4):1―8.Hu Jinjun,Xie Lili.Review of rupture directivity related concepts in seismology[J].Earthquake Engineering and Engineering Vibration,2011,31(4):1―8.(in Chinese)
    [4]段安,钱稼茹.CNP1000核电厂安全壳模型结构抗震安全分析[J].工程力学,2009,26(4):153―157.Duan An,Qian Jiaru.Aseismic safety analysis of a containment vessel model for CNP1000 nuclear power plant[J].Engineering Mechanics,2009,26(4):153―157.(in Chinese)
    [5]王涛,王飞,侯钢领,等.核电厂隔震结构的振动台试验研究[J].工程力学,2014,31(10):62―68,84.Wang Tao,Wang Fei,Hou Gangling,et al.Shaking table tests on base-isolated nuclear power plant[J].Engineering Mechanics,2014,31(10):62―68,84.(in Chinese)
    [6]阳涛,杨哲飚,陆新征,等.核电厂安全壳结构模型碳纤维布加固试验研究[J].工程力学,2017,34(8):144―153.Yang Tao,Yang Zhebiao,Lu Xinzheng,et al.Experimental study of nuclear power plant concrete containment strengthened with externally wrapped carbon fiber reinforced polymer sheets[J].Engineering Mechanics,2017,34(8):144―153.(in Chinese)
    [7]Ehsan Y D,Azad Y,Ahmad N,et al.Incorporating source rupture characteristics into the near-fault pulse prediction model[J].Bulletin of the Seismological Society of America,2018,108(1):200―209.
    [8]Sinan A,Saed M,Yalin A.A study on major seismological and fault-site parameters affecting near-fault directivity ground-motion demands for strike-slip faulting for their possible inclusion in seismic design codes[J].Soil Dynamics and Earthquake Engineering,2018,104(1):88―105.
    [9]Mayssa D,Armen D K.Simulation of orthogonal horizontal components of near‐fault ground motion for specified earthquake source and site characteristics[J].Earthquake Engineering and Structural Dynamics,2018,47(6):1369―1393.
    [10]Kitada Y,Umeki Y.Near-field earthquakes observed recently in Japan[R].Proceedings of IAEA Workshop on Safety Significance of Near-field Earthquakes,Trieste,Italy,2004:28―40.
    [11]Galal K,Ghobarah A.Effect of near-fault earthquakes on North American nuclear design spectra[J].Nuclear Engineering and Design,2006,236(18):1928―1936.
    [12]Bray J D,Rodriguez-Marek A.Characterization of forward-directivity ground motions in the near-fault region[J].Soil Dynamics and Earthquake Engineering,2004,24(11):815―828.
    [13]Xu Longjun,Yang Shengchao,Xie Lili.Response spectra for nuclear structures on rock sites considering the near-fault directivity effect[J].Earthquake Engineering and Engineering Vibration,2010,9(3):357―365.
    [14]Baker J W.Identification of near-fault velocity pulses and prediction of resulting response spectra[C].Proceedings of Geotechnical Earthquake Engineering and Soil Dynamics,Sacramento,United States,2008.
    [15]Shahi S K,Baker J W.An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J].Bulletin of the Seismological Society of America,2011,101(2):742―755.
    [16]Somerville P G,Smith N F,Graves R W,et al.Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J].Seismological Research Letters,1997,68(1):199―222.
    [17]Tothong P,Cornell C A.Probabilistic seismic demand analysis using advanced ground motion intensity measures,attenuation relationships,and near-fault effects[R].PEER 2006-10,Pacific Earthquake Engineering Research Center,University of California at Berkeley,Berkeley,California,2006:1―205.
    [18]Chioccarelli E,Iervolino I.Near-source seismic demand and pulse-like records:a discussion for L’Aquila earthquake[J].Earthquake Engineering and Structural Dynamics,2010,39(9):1039―1062.
    [19]Alavi B,Krawinkler H.Consideration of near-fault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering,New Zealand,2000:1―8.
    [20]Fu Q,Menun C.Seismic-environment-based simulation of near-fault ground motions[C]//Proceedings of the13th World Conference on Earthquake Engineering,Vancouver,Canada,2004:15―25.
    [21]Somerville P G.Magnitude scaling of the near fault rupture directivity pulse[J].Physics of the Earth and Planetary Interiors,2003,137(1):201―212.
    [22]Iervolino I,Cornell C A.Probability of occurrence of velocity pulses in near-source ground motions[J].Bulletin of the Seismological Society of America,2008,98(5):2262―2277.
    [23]Wells D L,Coppersmith K J.New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J].Bulletin of the Seismological Society of America,1994,84(4):974―1002.
    [24]Boore D M,Atkinson G M.Boore-atkinson nga-west2equations for predicting response spectral accelerations for shallow crustal earthquakes[R].PEER,Pacific Earthquake Engineering Research Center,Berkeley,California,2013:142―150.
    [25]Robin K,McGuire.Probablistic seismic hazard analysis and design earthquake:closing the loop[J].Bulletin of the Seismological Society of America,1995,85(5):1275―1284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700