用户名: 密码: 验证码:
长江口沉积物甲烷产生潜力与产甲烷菌群落特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methane production potential and methanogens community in the sediments of the Yangtze Estuary
  • 作者:李小飞 ; 侯立军 ; 刘敏
  • 英文作者:LI Xiaofei;HOU Lijun;LIU Min;Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University;School of Geographical Sciences, Fujian Normal University;State Key Laboratory of Estuarine and Costal Research, East China Normal University;Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University;
  • 关键词:甲烷 ; 释放潜力 ; 甲烷 ; 沉积物 ; 长江口
  • 英文关键词:methane;;emission potential;;methanogens community;;sediment;;Yangtze Estuary
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学地理科学学院;华东师范大学河口海岸学国家重点实验室;华东师范大学地理科学学院地理信息科学教育部重点实验室;
  • 出版日期:2019-01-02 16:46
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.41701548,41761144062)
  • 语种:中文;
  • 页:HJXX201905035
  • 页数:9
  • CN:05
  • ISSN:11-1843/X
  • 分类号:314-322
摘要
采用室内培养与高通量测序技术,研究了长江口沉积物产甲烷潜力及其产甲烷菌群落组成特征.结果表明,研究区沉积物甲烷排放速率为4.15~7.12 nmol·g~(-1)·d~(-1),且表现出厌氧区高、丰氧区低的特点.甲烷产生潜力为丰氧区大于厌氧区,说明甲烷在水体中氧化是减少甲烷排放的重要环境过程.研究区沉积物中产甲烷菌群落组成具有明显的差异.厌氧区沉积物产甲烷菌的优势群落为Methanococcoides(拟甲烷球菌属)、Methanosarcina(甲烷八叠球菌属)和Methanosaeta(甲烷鬃菌属),丰氧区沉积物为Methanosarcina(甲烷八叠球菌属)、Methanosaeta(甲烷鬃菌属)和Methanocella(甲烷胞菌属),因而缺氧过程会对产甲烷菌群落产生重要的影响.通过估算发现,研究区甲烷的排放量为2487~6819 t·a~(-1),表明长江口是甲烷排放的净产生源.因此,由缺氧过程导致的河口环境因子变化会影响甲烷的代谢循环过程及其微生物群落组成,进而对河口生态系统甲烷排放产生重要的影响.
        In this study, incubation experiments and molecular approaches were used to investigate the methane emission potential and associated methanogens community in the sediments of the Yangtze Estuary. The results indicate that the methane emission rates were in the range of 4.15~7.12 nmol·g~(-1)·d~(-1), which were higher in anaerobic sites than in aerobic sites. However, the methane production potential was higher in aerobic sites than anaerobic sites, which suggested that methane oxidation in water was the important process reducing the methane emission from sediment to atmosphere. The methanogens communities differed across the sampling sites. Methanococcoides, Methanosarcina and Methanosaeta were the dominated communities in the anaerobic sites, and Methanosarcina, Methanosaeta and Methanocella were the important communities in aerobic sites, indicating the importance of oxygen depletion process to alter methanogens community composition. The estimated mean annual amount of methane emission was approximately 2487~6819 t·a~(-1), suggesting that Yangtze Estuary is the net source of methane emission. Overall, these results indicate that the variations in environmental factors induced by oxygen depletion process strongly influence the metabolic cycling of methane and associated microbial communities, which further play an important role in regulating the methane emission in estuarine ecosystems.
引文
Bange H W,Bergmann K,Hansen H P,et al.2010.Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernf orde Bay,SW Baltic Sea)[J].Biogeosciences,7:1279-1284
    Borrel Q,Jezequel D,Biderre-Petit C,et al.2011.Production and consumption of methane in freshwater lake ecosystems[J].Research in Microbiology,162:832-847
    Chowdhury T R,Dick R P.2013.Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands[J].Applied Soil Ecology,65(65):8-22
    Conrad R.1999.Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J].FEMS Microbiology Ecology,28(3):193-202
    Deng F Y,Hou L J,Liu M,et al.2015.Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary[J].Journal of Geophysical Research:Biogeosciences,120(8):1521-1531
    Egger M,Rasigraf O,Sapart C J,et al.2014.Iron-mediated anaerobic oxidation of methane in Brackish coastal sediments[J].Environmental Sciences and Technology,49(1):277-283
    Feldman D R,Collins W D,Biraud S C,et al.2018.Observationally derived rise in methane surface forcing mediated by water vapour trends[J].Nature Geoscience,11(4):238
    Gelesh L,Marshall K,Boicourt W,et al.2016.Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary,Chesapeake Bay,USA[J].Limnology and Oceanography,61(S1):253-266
    顾航,肖凡书,贺志理,等.2018.湿地微生物介导的甲烷排放机制[J].微生物学报,58(4):618-632
    顾培培,张桂玲,李佩佩,等.2011.调水调沙对黄河口及邻近海域溶存甲烷的影响[J].中国环境科学,31(11):1821-1828
    H?j L,Olsen R A,Torsvik V L.2008.Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat[J].The ISME Journal,2(1):37-48
    Holler T,Wegener G,Niemann H,et al.2011.Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction[J].Proceedings of the National Academy of Sciences,108(52):1484-1490
    Horn M A,Matthies C,Küsel K,et al.2003.Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat[J].Applied and Environmental Microbiology,69(1):74-83
    胡静文,张海龙,李莉,等.2016.长江口悬浮颗粒物中有机质来源及厌氧氨氧化活动的季节性变化[J].中国科学:地球科学,46(6):767-781
    胡晓婷,程吕,林贤彪,等.2016.长江口及其邻近海域沉积物磷的赋存形态和空间分布[J].环境科学学报,36(5):1782-1791
    黄佳芳,倪进治,仝川,等.2015.闽江口半咸水沼泽湿地土壤甲烷产生过程及硫酸盐还原对其抑制作用研究[J].环境科学学报,35(3):862-872
    Kim S Y,Veraart A J,Meima-Franke M,et al.2015.Combined effects of carbon,nitrogen and phosphorus on CH4 production and denitrification in wetland sediments[J].Geoderma,259-260:354-361
    Knittel K,Boetius A.2009.Anaerobic oxidation of methane:progress with an unknown process[J].Annual Review Microbiology,63:311-334
    Kotsyurbenko O R,Friedrich M W,Simankova M V,et al.2007.Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain[J].Applied and Environmental Microbiology,73(7):2344-2348
    Lelieveld J,Crutzen P J,Brühl C.1993.Climate effects of atmospheric methane[J].Chemosphere,26:739-768
    李道季,张经,黄大吉,等.2002.长江口外氧的亏损[J].中国科学:地球科学,32(8):686-694
    Lin Y X,Liu D Y,Ding W X,et al.2015.Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands[J].Applied Microbiology and Biotechnology,99(24):10779-10791
    刘海霞,李道季,高磊,等.2012.长江口夏季低氧区形成及加剧的成因分析[J].海洋科学进展,30(2):186-197
    Lovley D R,Phillips E J P.1987.Rapid assay for microbially reducible ferric iron in aquatic sediments[J].Applied and Environmental Microbiology,53:1536-1540
    Minamikawa K,Nishimura S,Sawamoto T,et al.2010.Annual emissions of dissolved CO2,CH4 and N2O in the subsurface drainage from three cropping systems[J].Global Change Biology,16(2):796-809
    Nisbet E G,Dlugokencky E J,Bousquet P.2014.Methane on the rise—again[J].Science,343:493-495
    Reeburgh W S.1976.Methane consumption in Cariaco Trench waters and sediments[J].Earth & Planetary Science Letters,28(3):337-344
    Reeburgh W S.2007.Oceanic methane biogeochemistry[J].Chemical Reviews,107(2):486-513
    Sawicka J E,Brüchert V.2017.Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments[J].Biogeosciences,14(2):325-339
    Segarra K E A,Comerford C,Slaughter J,et al.2013.Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments[J].Geochimica et Cosmochimica Acta 115:15-30
    Segarra K E A,Schubotz F,Samarkin V,et al.2015.High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J].Natural Communication,6:7477
    She C X,Zhang Z C,Cadillo-Quiroz H,et al.2016.Factors regulating community composition of methanogens and sulfate-reducing bacteria in brackish marsh sediments in the Min River estuary,southeastern China[J].Estuarine,Coastal and Shelf Science,181:27-38
    Shen L D,Hu B L,Liu S,et al.2016.Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J].Applied Microbiology and Biotechnology,100(16):7171-7180
    Simpson I J,Chen T Y,Blake D R,et al.2002.Implications of the recent fluctuations in the growth rate of tropospheric methane[J].Geophysical Research Letter,29:1479
    Swart N C,Gille S T,Fyfe J C,et al.2018.Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion[J].Nature Geoscience,DOI:https://doi.org/10.1038/s41561-018-0226-1.
    汤新武,蔡德所,陈求稳,等.2015.三峡工程三期蓄水初期长江口水域春季浮游动物群落特征及其与环境的关系[J].环境科学学报,35(4):1082-1088
    Tong C,She C X,Yang P,et al.2015.Weak correlation between methane production and abundance of methanogens across three brackish marsh zones in the Min River Estuary,China[J].Estuaries and Coasts,38(6):1872-1884
    仝川,柳铮铮,曾从盛,等.2010.模拟SO沉降对河口潮汐湿地甲烷排放通量的影响[J].中国环境科学,30(3):302-308
    Vizza C,West W E,Jones S E,et al.2017.Regulators of coastal wetland methane production and responses to simulated global change[J].Biogeosciences,14(2):431-446
    Wang H J,Dai M H,Liu J W,et al.2016.Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary[J].Environmental Science Technology,50:2255-2263
    韦钦胜,王保栋,陈建芳,等.2015.长江口外缺氧区生消过程和机制的再认知[J].中国科学:地球科学,45(2):187-206
    Wilson B J,Mortazavi B,Kiene R P.2015.Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary[J].Biogeochemistry,123(3):329-347
    Yamamoto A,Yamanaka Y,Oka A,et al.2014.Ocean oxygen depletion due to decomposition of submarine methane hydrate[J].Geophysical Research Letters,41(14):5075-5083
    Yin G Y,Hou L J,Liu M,et al.2017.DNRA in intertidal sediments of the Yangtze Estuary[J].Journal of Geophysical Research:Biogeosciences,122(8):1988-1998
    翟俊,马宏璞,陈忠礼,等.2017.湿地甲烷厌氧氧化的重要性和机制综述[J].中国环境科学,37(9):3506-3514
    Zhang G S,Tian J Q,Jiang N,et al.2008a.Methanogen community in Zoige wetland of Tibetan Plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I[J].Environmental Microbiology,10(7):1850-1860
    Zhang G L,Zhang J,Liu S M,et al.2008b.Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area:riverine input,sediment release and atmospheric fluxes[J].Biogeochemistry,91(1):71-84
    张坚超,徐镱钦,陆雅海.2015.陆地生态系统甲烷产生和氧化过程的微生物机理[J].生态学报,35(20):6592-6603

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700