用户名: 密码: 验证码:
广州市秋季气溶胶光学特性日变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diurnal characteristics of autumn ASD-aerosols over Guangzhou
  • 作者:汤玉明 ; 邓孺孺 ; 许敏端 ; 吴仪
  • 英文作者:TANG Yuming;DENG Ruru;XU Minduan;WU Yi;School of Geography and Planning,Sun Yat-sen University;South China Sea Planning and Environment Research Institute of State Oceanic Administration;Guangdong Engineering Research Center of Water Environment Remote Sensing Monitoring;
  • 关键词:气溶胶光学厚度(AOD) ; Angstrom参数 ; 气溶胶粒子谱 ; 广州市
  • 英文关键词:aerosol optical depth(AOD);;angstrom parameter;;aerosol size distribution;;Guangzhou
  • 中文刊名:ZSDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Sunyatseni
  • 机构:中山大学地理科学与规划学院;国家海洋局南海规划与环境研究院;广东省水环境遥感监测工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:中山大学学报(自然科学版)
  • 年:2019
  • 期:v.58;No.262
  • 基金:国家自然科学基金(41071230);; 中国博士后科学基金(2017M612792);; 广东省省级科技计划项目(2017B020216001);; 广东省水利科技创新项目(2016-08)
  • 语种:中文;
  • 页:ZSDZ201902008
  • 页数:10
  • CN:02
  • ISSN:44-1241/N
  • 分类号:64-73
摘要
气溶胶光学参数可以表明气溶胶粒子含量的多少、大气的浑浊情况、粒子分布特征等,对研究气溶胶具有重大意义。利用ASD FieldSpec3地物光谱仪,观测广州市2017年10月23和31日以及11月1日秋季典型天的气溶胶粒子日变化情况,反演了气溶胶光学厚度、Angstrom参数、粒子体积谱并对其日变化特征进行了分析。结果表明:①广州市秋季典型天的AOD值日变化量不大,总体趋势呈现波动式上升,各天AOD值略有差异;各天的波长指数均处于较高水平,说明广州市秋季典型天的气溶胶颗粒以细粒子为主;浑浊度系数普遍较低,表明大气较为清洁。②各天气溶胶粒子AOD、体积浓度的变化与交通、工业等人类的生产、生活活动有较大关系,从9:00开始逐步积累,在15:00达到峰值。③广州市秋季典型天的气溶胶组分结构比例随时间变化不大,说明各天污染源较为固定。气溶胶体积谱为双峰型,主控粒子为小于0.1μm的细粒子,主要由水溶性粒子和煤烟组成,此外由于地理位置因素存在少量的沙尘性和海洋性粒子,广州市整体气溶胶类型为城市工业型与海洋型的混合结构。
        Aerosol optical parameters can indicate content and distribution of aerosol particles, and turbidity of atmosphere, which are of great significance to the research of aerosols. ASD FieldSpec3 spectroradiometer was used to measure the diurnal variation of aerosol particle contents over Guangzhou city on October 23, October 31, November 1, 2017 in typical autumn for inverting and analyzing its aerosol optical depth, Angstrom parameter, volume concentration and number concentration. The results showed that: 1) The daily variation of AOD was not notable and slightly different from day to day, but generally showed an increase trend. The wavelength indices of each day were high indicating that fine particles were principal components of aerosol particles in typical autumn day. The turbidity coefficient was low showing that the atmosphere was in good condition.2) The AOD, volume concentration and number concentration of aerosol particles over Guangzhou increased continuously from 9 o'clock and reached a maximus at 15 o'clock, which were possibly attributed to human activities. 3) The aerosol particles over Guangzhou showed a bimodal pattern in volume concentration. They were mainly composed of water-soluble and soot fine particles with sizes less than 0.1 μm, and showed a stable proportion between various aerosol particles, which did not change with time, indicating a relatively fixed pollution source. In addition, the slight amount of dust and maritime particles represented that overall aerosol of Guangzhou was a hybrid type made up of industrial and ocean type.
引文
[1] BERG L K,FAST J D,BARNARD J C,et al.The two-column aerosol project:Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth[J].Journal of Geophysical Research Atmospheres,2016,121(1):336-361.
    [2] HE J,ZHA Y,ZHANG J,et al.Retrieval of aerosol optical thickness from HJ-1 CCD data based on MODIS-derived surface reflectance[J].International Journal of Remote Sensing,2015,36(3):882-898.
    [3] SRIPERAMBUDUR U L,SONNATI C,VENKATA N P,et al.Retrieval of aerosol optical depth from Oceansat-2 OCM[J].Open Journal of Marine Science,2015,5(4):443-454.
    [4] LUO Y,ZHENG X,ZHAO T,et al.A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data[J].International Journal of Climatology,2014,34(3):863-870.
    [5] WHITBY K T.THe physical characteristics of sulfur aerosols[J].Atmospheric Environment,2007,12(1):135-159.
    [6] 肖钟湧,江洪,陈健,等.利用MODIS遥感数据反演广州市气溶胶光学厚度[J].中国环境科学,2010,30(5):577-584.XIAO Z Y,JIANG H,CHEN J,et al.The retrieval of aerosol optical thickness with high spatial resolution using MODIS data over Guangzhou[J].China Environmental Science,2010,30(5):577-584.
    [7] 刘菲,牛生杰.北方沙尘气溶胶光学厚度和粒子谱的反演[J].大气科学学报,2006,29(6):775-781.LIU F,NIU S J.Optical thickness and size distribution of dust aerosol particles in Inner Mongolia[J].Transactions of Atmospheric Sciences,2006,29(6):755-781.
    [8] 左浩毅,杨经国.基于气溶胶光学厚度反演大气气溶胶尺度分布[J].物理学报,2007,56(10):6132-6136.ZUO H Y,YANG J G.Retrieving of aerosol size distribution based on the measurement of aerosol optical depth[J].Acta Physica Sinica,2007,56(10):6132-6136.
    [9] 陈启东,邓孺孺,秦雁,等.基于太阳光度计的广州亚运期间气溶胶参数分析[J].热带地理,2011,31(5):445-450.CHEN Q D,DENG R R,QIN Y,et al.Analysis of aerosol parameter by using the Sun Photometer during Guangzhou Asian Games[J].Tropical Geography,2011,31(5):445-450.
    [10] 徐丹,邓孺孺,陈启东,等.基于CE318观测的广州市气溶胶粒子谱分布特征[J].热带地理,2015,35(1):13-20.XU D,DENG R R,CHEN Q D,et al.Aerosol size distribution in Guangzhou based on the CE318 Data[J],Tropical Geography,2015,35(1):13-20.
    [11] 徐丹,邓孺孺,陈启东,等.基于CE318观测的广州市气溶胶光学特性[J].热带地理,2015,35(1):21-28.XU D,DENG R R,CHEN Q D,et al.Aerosol optical properties in Guangzhou Based on the CE318 data[J].Tropical Geography,2015,35(1):21-28.
    [12] ESTELLéS V,CAMPANELLI M,SMYTH T J,et al.AERONET and Euroskyrad (ESR) aerosol optical depth intercomparison on Cimel CE318 and Prede POM01 radiometers[J].Proceedings of SPIE-The International Society for Optical Engineering,2010,78270Y;doi:10.1117/12.865039
    [13] ESTELLéS V,CAMPANELLI M,UTRILLAS M P,et al.Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer[J].Atmospheric Measurement Techniques,2011,4(6):569-579.
    [14] LIU Y J,NIU S J,ZHENG Y F.Optical depth characteristics of yinchuan atmospheric aerosols based on the CE-318 Sun tracking spectrophotometer data[J].Journal of Nanjing Institute of Meteorology,2004,27(5):615-622.
    [15] 邓孺孺,田国良,孙荃,等.北京市污染气溶胶散射特征实验及其数值模拟[J].遥感学报,2003,7(4):321-327.DENG R R,TIAN G L,SUN Q,et al.Experiment and numeric simulation for the scattering characteristics of pollute aerosol in Beijing City[J].Journal of Remote Sensing,2003,7(4):321-327.
    [16] 肖钟湧,江洪,余树全,等.杭州地区大气气溶胶光学特性高光谱研究[J].环境科学学报,2008,28(9):1894-1903.XIAO Z Y,JIANG H,YU S Q,et al.Monitoring the atmosphere aerosol optical characteristics using hyperspectral remote sensing in Hangzhou region[J].Acta Scientiae Circumstantiae,2008,28(9):1894-1903.
    [17] 亓雪勇,田庆久.利用地物光谱仪测算大气气溶胶光学厚度方法[J].遥感信息,2004(4):16-18.QI X Y,TIAN Q J.Aerosol optical depth retrieval method based on field spectroradiometer[J].Remote Sensing Information,2004(4):16-18.
    [18] 孙林.城市地区大气气溶胶遥感反演研究[D].北京:中国科学院遥感应用研究所,2006.SUN L.Remote sensing of aerosols over urban areas[D].Beijing:Institute of Remote Sensing Applications,2006.
    [19] HEUKLON T K V.Estimating atmospheric ozone for solar radiation models[J].Solar Energy,1979,22(1):63-68.
    [20] ?NGSTR?M A.Techniques of determinig the turbidity of the atmosphere[J].Tellus,2010,13(2):214-223.
    [21] YAMAMOTO G,TANAKA M.Determination of aerosol size distribution from spectral attenuation measurements[J].Appl Opt,1969,8(2):447-453.
    [22] BASSAN P,KOHLER A,MARTENS H,et al.Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples.[J].Analyst,2010,135(2):268-277.
    [23] Van de HULST H C,TWERSKY V.Light scattering by small particles[M].Dover Publications,1981.87-94.
    [24] 黄祖照,王杰,刘建国,等.广州城区大气细颗粒物粒谱分布特征分析[J].中国环境科学,2012,32(7):1177-1181.HUANG Z Z,WANG J,LIU J G,et al.The analysis of the characterization of fine particle size distribution in urban area of Guangzhou[J].China Environmental Science,2012,32(7):1177-1181.
    [25] 司福祺,谢品华,刘建国,等.基于DOAS技术的气溶胶粒谱分布反演方法研究[J].光谱学与光谱分析,2008,28(10):2417-2420.SI F Q,XIE P H,LIU J G,et al.Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS[J].Spectroscopy and Spectral Analysis,2008,28(10):2417-2420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700