用户名: 密码: 验证码:
螺旋槽液膜密封热流体动力润滑性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of thermohydrodynamic lubrication performance of spiral-grooved liquid film seals
  • 作者:孟祥铠 ; 江莹莹 ; 文静 ; 彭旭东
  • 英文作者:MENG Xiangkai;JIANG Yingying;ZHAO Wenjing;PENG Xudong;Institute of Chemical Process Machinery, Zhejiang University of Technology;
  • 关键词:热流体动力润滑 ; 能量守恒 ; 有限单元法 ; 螺旋槽 ; 热效应
  • 英文关键词:thermohydrodynamic lubrication;;energy conservation;;finite element method;;spiral groove;;thermal effect
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:浙江工业大学化工机械研究所;
  • 出版日期:2019-02-18 13:40
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51775505,U1737202);; 浙江省自然科学基金重点项目(LY17E050018,LQ16E050009)
  • 语种:中文;
  • 页:HGSZ201904031
  • 页数:10
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:277-286
摘要
基于热流体动力润滑理论,建立了基于质量守恒和能量守恒的螺旋槽机械密封准三维热流体动力模型,采用有限单元法同时求解跨膜平均能量方程和动静环热传导方程,并迭代求解广义雷诺方程和温度方程获得了液膜压力、温度和密封环的温度分布。对比分析了不同螺旋槽参数下密封热流体动力润滑(THD)和流体动力润滑(HD)的密封特性。结果表明:高黏度下润滑液膜的热效应不可忽略。与THD模型相比,HD模型过高估计了开启力和摩擦系数,但低估了密封泄漏率。以开启力为目标,THD模型下的最优槽深小于HD模型下的值;大的槽坝比和螺旋槽个数均会增加密封泄漏率;螺旋槽结构对摩擦系数的影响规律与开启力趋势相反;大槽深和大槽坝比有助于降低液膜和密封环的温度。
        Based on the thermohydrodynamic lubrication theory, a quasi three-dimensional thermohydrodynamic model of the spiral-grooved mechanical face seals considering the mass and energy conservation was established.The finite element method was applied to simultaneously solve the average energy equation of the cross film and the heat conduction equations of the rotor and stator. The equation and temperature equations obtained the film pressure, temperature, and temperature distribution of the seal ring. The sealing performance of THD and HD under the different spiral-grooved parameters was compared. The results show that the thermal effect of high viscosity fluid film can't be neglected. Compared with the THD model, HD model overestimates the opening force and friction coefficient but underestimates the leakage rate. When taking the opening force as the objective, the optimal value of the groove depth from THD is smaller than one from HD model. The increase in the groove-dam ratio and the groove number leads to the rise in the leakage rate of the seal. The influence of the spiral-grooved parameters on the friction coefficient is opposite to the opening force. The increase in the groove depth and the groove-dam ratio is help for reducing the temperature rise of the liquid film and the seal rings.
引文
[1]彭旭东,刘坤,白少先,等.典型螺旋槽端面干式气体密封动压开启性能[J].化工学报, 2013, 64(1):326-333.Peng X D, Liu K, Bai S X, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves[J]. CIESC Journal, 2013, 64(1):326-333.
    [2]王衍,孙见君,陶凯,等. T型槽干气密封数值分析及槽型优化[J].摩擦学学报, 2014, 34(4):420-427.Wang Y, Sun J J, Tao K, et al. Numerical analysis of T-groove dry gas seal and groove optimization[J]. Tribology, 2014, 34(4):420-427.
    [3]王永乐,李鲲,吴兆山,等.高压液体润滑典型深槽机械密封性能的试验研究[J].流体机械, 2017, 45(6):6-9.Wang Y L, Li K, Wu Z S, et al. Comparative study of high pressure liquid lubricant mechanical seal with typical deep grooves[J]. Fluid Machinary, 2017, 45(6):6-9.
    [4]马学忠,孟祥铠,王玉明,等.机械端面密封反向螺旋槽空化效应与泄漏控制机理[J].化工学报, 2018, 69(4):1558-1568.Ma X Z, Meng X K, Wang Y M, et al. Cavitation effect and leakage control mechanism of reverse spiral grooves mechanical end face seals[J]. CIESC Journal, 2018, 69(4):1558-1568.
    [5]李振涛,郝木明,杨文静,等.螺旋槽液膜密封端面空化发生机理[J].化工学报, 2016, 67(11):4750-4761.Li Z T, Hao M M, Yang W J, et al. Cavitation mechanism of spiral groove liquid film seals[J].CIESC Journal, 2016, 67(11):4750-4761.
    [6]曹恒超,郝木明,李振涛,等.相变对螺旋槽液膜密封性能的影响[J].化工学报, 2017, 68(8):3190-3201.Cao H C, Hao M M, Li Z T, et al. Effect of phase change on performance of spiral groove liquid film seals[J].CIESC Journal,2017, 68(8):3190-3201.
    [7]杨文静,郝木明,李振涛,等.考虑锥度及波度的螺旋槽液膜密封动态特性分析[J].化工学报, 2016, 67(12):5199-5207.Yang W J, Hao M M, Li Z T, et al. Analysis of dynamic characteristics of spiral groove liquid film seal considering taper and waviness[J]. CIESC Journal, 2016, 67(12):5199-5207.
    [8]宋鹏云,张帅,许恒杰.同时考虑实际气体效应和滑移流效应螺旋槽干气密封性能分析[J].化工学报, 2016, 67(4):1405-1415.Song P Y, Zhang S, Xu H J. Analysis of performance of spiral groove dry gas seal considered effects of both real gas and slip flow[J]. CIESC Journal, 2016, 67(4):1405-1415.
    [9]宋鹏云,张帅.滑移流影响螺旋槽干气密封性能的解析法[J].排灌机械工程学报, 2014,(10):877-882.Song P Y, Zhang S. An approximately analytical method of characteristics of spiral groove dry gas seals under slip flow conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014,(10):877-882.
    [10]宋鹏云,产文,毛文元,等.实际气体效应对螺旋槽干气密封性能影响的数值分析[J].排灌机械工程学报, 2015, 33(10):874-881.Song P Y, Chan W, Mao W Y, et al. Numerical analysis on effect of real gas on spiral groove dry gas seal performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(10):874-881.
    [11]江锦波,陈源,赵文静,等.干气密封螺旋槽几何参数优选交互影响[J].化工学报, 2018, 69(4):1518-1527.Jiang J B, Chen Y, Zhao W J, et al. Interaction effect of optimized value of geometric parameters of spiral groove of dry gas seal[J].CIESC Journal, 2018, 69(4):1518-1527.
    [12]江锦波,陈源,徐奇超,等.干气密封螺旋槽衍生结构演变规律与工况适用性[J].摩擦学学报, 2018, 38(3):264-273.Jiang J B, Chen Y, Xu Q C, et al. Evolution rule and working applicability of typical derived structures of spiral groove dry gas seal[J]. Tribology, 2018, 38(3):264-273.
    [13]陈源,彭旭东,李纪云,等.螺旋槽结构参数对干气密封动态特性的影响研究[J].摩擦学学报, 2016, 36(4):397-405.Chen Y, Peng X D, Li J Y, et al. The influence of structure parameters of spiral groove on dynamic characteristics of dry gas seal[J]. Tribology, 2016, 36(4):397-405.
    [14] Lin X, Jiang S, Zhang C, et al. Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation, inertia and turbulence[J].Tribology International, 2018, 119:645-658.
    [15] Sahu M, Giri A K, Das A. Thermohydrodynamic analysis of a journal bearing using CFD as a tool[J]. Int. J. Sci. Res. Publ.,2012, 2(9):1-7.
    [16] Qiu Y, Khonsari M M. Thermohydrodynamic analysis of spiral groove mechanical face seal for liquid applications[J]. Journal of Tribology, 2012, 134(2):021703.
    [17] Tournerie B. Three-dimensional modeling of THD lubrication in face seals[J]. J. Trib., 2001, 123(6):548–555.
    [18] Danos J C, Tournerie B, Frêne J. Notched rotor face effects on thermohydrodynamic lubrication in mechanical face seal[J].Tribology, 2000, 38:251-259.
    [19] Pierre I, Fillon M, Bouyer J, et al. Thermohydrodynamic study of misaligned plain journal bearings-comparison between experimental data and theoretical results[J]. International Journal of Applied Mechanics and Engineering, 2002, 7(3):949-960.
    [20] Paranjpe R, Taeyoung H. A study of the thermohydrodynamic performance of steadily loaded journal bearings[J]. ASLE Transactions, 1994, 37(4):679-690.
    [21] Elrod H G. A cavitation algorithm[J]. Trans. ASME J. Lub. Tech.,1981, 103(3):350-354.
    [22] Maraiy S Y, Crosby W A, El-Gamal H A. Thermohydrodynamic analysis of airfoil bearing based on bump foil structure[J].Alexandria Engineering Journal, 2016, 55(3):2473-2483.
    [23] Chang Q, Yang P, Meng Y, et al. Thermoelastohydrodynamic analysis of the static performance of tilting-pad journal bearings with the Newton–Raphson method[J]. Tribology International,2002, 35(4):225-234.
    [24] Sahu M, Sarangi M, Majumdar B C. Thermo-hydrodynamic analysis of herringbone grooved journal bearings[J]. Bearing,2009, 39(11):1395-1404.
    [25]何加猛,王小静,祁高安,等.计入三维热效应对可倾瓦推力轴承动力特性的影响[J].上海大学学报(自然科学版), 2012, 18(5):519-524.He J M, Wang X J, Qi G A, et al. Influence of considering 3D thermal effects on dynamic characteristic of tilting pad thrust bearing[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(5):519-524.
    [26]王国亮,何加猛,陈波,等.高压周隙密封三维热弹流理论研究[J].机电设备, 2011, 28(5):5-8.Wang G L, He J M, Chen B, et al. Three dimensional thermoelastic-hydrodynamic theoretical study of high pressure plane seal[J]. Mechanical and Electrical Equipment, 2011, 28(5):5-8.
    [27] Fatu A, Hajjam M, Bonneau D. A new model of thermoelastohydrodynamic lubrication in dynamically loaded journal bearings[J]. Journal of Tribology, 2006, 128(1):53-54.
    [28] Stefani F, Rebora A. Steadily loaded journal bearings:quasi-3D mass–energy-conserving analysis[J]. Tribology International,2009, 42(3):448-460.
    [29] Luan Z, Khonsari M M. Heat transfer correlations for laminar flows within a mechanical seal chamber[J]. Tribology International, 2009, 42(5):770-778.
    [30] Meng X K, Zhao W J, Shen M X, et al. Thermohydrodynamic analysis on herringbone-grooved mechanical face seals with a quasi-3D model[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2018, 232(11):1402-1414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700