用户名: 密码: 验证码:
承压含水层下大倾角煤层条带开采参数设计与实践
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Practice of Strip Mining Parameters for Large Dip Angle Coal Seam Under Confined Aquifer
  • 作者:马军杰 ; 范德源 ; 徐强
  • 英文作者:MA Junjie;FAN Deyuan;XU Qiang;Shandong Xinhe Mining Co., Ltd.;College of Mining and Safety Engineering, Shandong University of Science and Technology;
  • 关键词:承压含水层 ; 大倾角 ; 条带开采 ; 导水断裂带 ; 数值模拟 ; 参数设计
  • 英文关键词:confined aquifer;;large dip angle;;strip mining;;water-induced fractured zones;;numerical simulation;;parameter design
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:山东新河矿业有限公司;山东科技大学矿业与安全工程学院;
  • 出版日期:2019-04-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.538
  • 语种:中文;
  • 页:MKAQ201904037
  • 页数:6
  • CN:04
  • ISSN:21-1232/TD
  • 分类号:155-159+169
摘要
为了研究新河煤矿承压含水层下大倾角煤层开采导水断裂带发育问题,采用FLAC3D数值模拟软件,对不同条带开采参数时上覆岩层破裂发育演化规律进行研究。结果表明:当工作面宽度为30 m,煤柱留设宽度为30 m时,工作面顶底板变形破坏范围明显减小,导水断裂带发育高度为30 m,与上部含水层距离为22 m。现场实践表明,在钻孔深度为67~96 m范围内钻孔平均漏水量为4 L/min,导水断裂带最大发育高度为32 m,工作面顶板导水断裂带得到了有效控制,确保了新河煤矿承压含水层下大倾角煤层的安全开采,有效防止了突水事故的发生。
        In order to study the development of water-induced fractured zones in mining large dip angle coal seams under confined aquifers in Xinhe Coal Mine, FLAC3 Dnumerical simulation software was used to study the development and evolution of overburden fracture during different strip mining parameters. The results show that: when the width of the working face is 30 m and the width of the coal pillar is 30 m, the deformation range of the roof and floor of the working face is significantly reduced.The development height of the water-induced fracture zone is 30 m, and the distance from the upper aquifer is 22 m. Field practice shows that: the average leakage of boreholes is 4 L/min in drilling depth of 67 to 96 m, and the maximum development height of water-induced fractured zones is 32 m, water-induced fractured zone on the roof of the working face has been effectively controlled. It ensured the safe mining of the coal seam with large dip angle under the confined aquifer in Xinhe Coal Mine and effectively prevented the accident of water inrush.
引文
[1]马亚杰,武强,章之燕,等.煤层开采顶板导水裂隙带高度预测研究[J].煤炭科学技术,2008,36(5):59.
    [2]许家林,朱卫兵,王晓振.基于关键层位置的导水断裂带高度预计方法[J].煤炭学报,2012,37(5):762.
    [3]陈红江,李夕兵,刘爱华,等.水下开采顶板突水相似物理模型试验研究[J].中国矿业大学学报,2010,39(6):854-859.
    [4]郭文兵,邓喀中,邹友峰.我国条带开采的研究现状与主要问题[J].煤炭科学技术,2004,32(8):7-11.
    [5]郭惟嘉,王海龙,刘增平.深井宽条带开采煤柱稳定性及地表移动特征研究[J].采矿与安全工程学报,2015,32(3):369-375.
    [6]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141.
    [7]郭惟嘉,陈绍杰,李法柱.厚松散层薄基岩条带法开采采留尺度研究[J].煤炭学报,2006,31(6):747-751.
    [8]黄炳香,刘长友,许家林.采场小断层对导水裂隙高度的影响[J].煤炭学报,2009,34(10):1316-1321.
    [9]赵德深,徐孟林.软岩厚煤层开采覆岩破坏规律三维数值模拟分析[J].广西大学学报(自然科学版),2013,38(1):235-239.
    [10]许文松,王帆,高瞻.厚松散层承压水下采煤覆岩载荷层结构分析[J].煤炭技术,2012,31(8):85-86.
    [11]陈雪啸,周华强,孔祥辉,等.承压水下膏体充填开采顶板破断的数值模拟[J].煤炭技术,2011,30(4):64-66.
    [12]陈育民.FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [13]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700