用户名: 密码: 验证码:
汤东活动断裂带土壤H_2、Rn地球化学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of Soil Gas H_2 and Rn in the Tangdong Active Fault
  • 作者:胡宁 ; 马志敏 ; 王明亮 ; 王宇 ; 娄露玲 ; 夏修军 ; 张宝山 ; 王文净 ; 郭德科
  • 英文作者:HU Ning;MA Zhi-min;WANG Ming-liang;WANG Yu;LOU Lu-ling;XIA Xiu-jun;ZHANG Bao-shan;WANG Wen-jing;GOU De-ke;Earthquake Administration of Xinxiang City;Xinxiang No.1 High School;Henan Earthquake Administration;
  • 关键词:断裂带 ; H_2、 ; Rn异常成因 ; 构造条件 ; 汤东活动断裂
  • 英文关键词:Active fault zone;;Soil gas;;Construction conditions;;Tangdong Fault
  • 中文刊名:DIZN
  • 英文刊名:Earthquake
  • 机构:河南省新乡市地震局;河南省新乡市第一中学;河南省地震局;
  • 出版日期:2019-04-15
  • 出版单位:地震
  • 年:2019
  • 期:v.39
  • 基金:中国地震局三结合项目(CEA-JC/3JH-171706);; 中国地震局星火计划攻关项目(XH16026);; 中国地震局星火计划青年项目(XH19028YSX)
  • 语种:中文;
  • 页:DIZN201902016
  • 页数:9
  • CN:02
  • ISSN:11-1893/P
  • 分类号:176-184
摘要
为研究汤东断裂带土壤气体地球化学特征及其所反映的构造地球化学背景,采用野外监测的方法分析了张河村与邢李庄村两条测线的土壤H_2、 Rn分布特征。结果表明,张河村H_2浓度、 Rn活度浓度的分布范围分别为0.24×10~(-6)~174.7×10~(-6)、 13.3~69.8 kBq·m~(-3),背景值分别为14.26×10~(-6), 24.8 kBq·m~(-3)。邢李庄测线H_2浓度、 Rn活度浓度的分布范围11.8×10~(-6)~67.06×10~(-6)、 43.6~72.6 kBq·m~(-3),背景值分别为37.13×10~(-6)、 72.6 kBq·m~(-3)。张河村测线在90~105 m处, H_2、 Rn出现强烈高值异常,而120~150 m处出现高值异常。异常值位于断裂带附近, H_2、 Rn气体测值对断裂位置具有良好的指示作用。气体异常主要受汤东活动断裂构造控制,汤东断裂下方的深大断裂和汤阴地堑中下地壳的低速体对深部气体释放有重要作用。
        In order to study the geochemical characteristics of soil gas and the tectono-geochemical background reflected by fault gas in the Tong-Dong fault zone, the field monitoring method was used to analyze the concentration distribution of soil H_2 and Rn in the two observation lines of Zhanghe village and Xinglizhuang village. The results show that the distributions of H_2 and Rn concentration in Zhanghe village ranged from 0.24 to 174.7×10~(-6) and 13.3 to 69.8 kBq·m~(-3), respectively. The background values of H_2 and Rn concentration are 14.26×10~(-6) and 24.8 kBq·m~(-3), respectively. The range of concentration distribution of H_2 and Rn in Xinglizhuang observation line ranged from 11.8 to 67.06×10~(-6) and 43.6 to 72.6 kBq·m~(-3) respectively, with background values of 37.13×10~(-6) and 72.6 kBq·m~(-3), respectively. In the measure line of Zhanghe village, strong anomaly of H_2 and Rn appeared at 90~105 m, but a higher anomaly occurred at 120~150 m, with anomalous values near the fault zone, which indicates the location of the fracture effectively. Integrated geological structure and physical geography, it is concluded that the high value anomaly of the gas composition in the survey line are mainly controlled by the tectonic conditions, and it is also affected by sediment properties and meteorological factors. Therefore, we should further track and monitor the gas composition in the soil layer of the target fault zone, and analyze the temporal and spatial variation of fault activity, and take gas isotope techniques to explore the source of the components, so as to enhance the important role of gas geochemical indicators for fault tectonics activity and to strengthen the efficiency of earthquake prevention.
引文
[1]陶明信,徐永昌,史宝光,等.中国不同类型断裂带的地幔脱气与深部地质构造特征[J].中国科学:地球科学,2005,35(5):441-451.
    [2]李营,杜建国,王富宽,等.延怀盆地土壤气体地球化学特征[J].地震学报,2009,31(1):82-91.
    [3]张炜.水文地球化学预报地震的原理与方法[M].北京:教育科学出版社,1988.
    [4]Ciotoli G,Lombardi S,Morandi S,et al.A multidisciplinary,statistical approach to study the relationships between helium leakage and neotectonic activity in a gas province:The Vasto basin Abruzzo-Molise(central Italy)[J].Aapg Bulletin,2004,88(3):355-372.
    [5]Ciotoli G,Lombardi S,Annunziatellis A.Geostatistical analysis of soil gas data in a high seismic intermontane basin:Fucino Plain,central Italy[J].Journal of Geophysical Research Solid Earth,2007,112(B5):2 637-2 655.
    [6]Baubron J C,Rigo A,Toutain J P.Soil gas profiles as a tool to characterise active tectonic areas:the Jaut Pass example(Pyrenees,France)[J].Earth&Planetary Science Letters,2002,196(1):69-81.
    [7]Zhang X,Sanderson D J.Numerical modelling of the effects of fault slip on fluid flow around extensional faults[J].Journal of Structural Geology,1996,18(1):109-119.
    [8]Barman C.Detection of earthquake induced radon precursors by Hilbert Huang Transform[J].Journal of Applied Geophysics,2016,133:123-131.
    [9]Yuce G,Fu C C,D'Alessandro W,et al.Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Fault in the Amik Basin(Hatay),Turkey[J].Chemical Geology,2017,469:129-146.
    [10]Sciarra A,Mazzini A,Inguaggiato S,et al.Radon and carbon gas anomalies along the Watukosek Fault System and Lusi mud eruption,Indonesia[J].Marine&Petroleum Geology,2018,90:70-90.
    [11]Ring U,Uysal I T,Yüce G,et al.Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults,south-central Australia[J].Earth&Planetary Science Letters,2016,454:304-318.
    [12]Fu C C,Walia V,Yang T F,et al.Preseismic anomalies in soil-gas radon associated with 2016M6.6 Meinong earthquake,Southern Taiwan[J].Terrestrial Atmospheric&Oceanic Sciences,2017,28:787-798
    [13]Zhou X,Liu L,Chen Z,et al.Gas geochemistry of the hot spring in the Litang fault zone,Southeast Tibetan Plateau[J].Applied Geochemistry,2017,79:17-26.
    [14]张磊,高小其,包创,等.呼图壁地下储气库构造气体地球化学特征[J].地震地质,2018,40(5):1 059-1 071.
    [15]刘菁华,王祝文,刘树田,等.城市活动断裂带的土壤氡、汞气评价方法[J].吉林大学学报(地球科学),2006,36(2):295-297.
    [16]周晓成,王传远,柴炽章,等.海原断裂带东南段土壤气体地球化学特征[J].地震地质,2011,33(1):123-132.
    [17]张慧,苏鹤军,李晨桦.合作市隐伏断层控制性地球化学探测场地试验[J].地震工程学报,2013,35(3):618-624.
    [18]沈立成,袁道先,丁悌平,等.中国西南地区CO2释放点的He同位素分布不均一性及大地构造成因[J].地质学报,2007,81(4):475-487.
    [19]中国地震局物探中心.新乡市活断层探测与地震危险性评价[R].2016.
    [20]刘保金.太行山南端地壳上地幔精细结构深地震反射剖面探测研究[R].2015.
    [21]刘保金,何宏林,石金虎,等.太行山东缘汤阴地堑地壳结构和活动断裂探测[J].地球物理学报,2012,55(10):3 266-3 276.
    [22]周晓成,杜建国,陈志,等.地震地球化学研究进展[J].矿物岩石地球化学通报,2012,31(4):340-346.
    [23]Kumar G,Kumari P,Kumar A,et al.A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India[J].Annals of Geophysics,2017,60(3):S0329.
    [24]Fu C C,Yang T F,Walia V,et al.Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J].Geochemical Journal,2005,39(5):427-439.
    [25]刘舒波,唐力君,孙青,等.汶川地震断裂带科学钻探工程2号孔350~800m井段的钻探泥浆气体组分变化[J].物探与化探,2012,36(1):48-53.
    [26]Sugisaki R,Ido M,Takeda H,et al.Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J].The Journal of Geology,1983,91(3):239-258.
    [27]Saruwatari K,Kameda J,Tanaka H.Generation of hydrogen ions and hydrogen gas in quartz-water crushing experiments:An example of chemical processes in active faults[J].Physics and Chemistry of Minerals,2004,31(3):176-182.
    [28]Sun Y,Zhou X,Zheng G,et al.Carbon monoxide degassing from seismic fault zones in the Basin and Range province,west of Beijing,China[J].Journal of Asian Earth Sciences,2017,149:41-48.
    [29]周晓成,柴炽章,雷启云,等.银川隐伏断层带土壤气中H2的地球化学特征[J].物探与化探,2013,37(1):147-149.
    [30]Fu C C,Yang T F,Chen C H,et al.Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J].Journal of Asian Earth Sciences,2017,149:64-77.
    [31]Weinlich F H,Faber E,Bou2kováA,et al.Seismically induced variations in MariánskéLázněfault gas composition in the NW Bohemian swarm quake region,Czech Republic-A continuous gas monitoring[J].Tectonophysics,2006,421(1):89-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700