用户名: 密码: 验证码:
哈萨克斯坦阿尔泰山树木径向生长及其对气候要素的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Radial Growth of Trees in Response to Climatic Factors in the Altay Mountains,South of Kazakhstan
  • 作者:刘蕊 ; 王勇辉 ; 姜盛夏 ; 张瑞波 ; 秦莉 ; Bulkajyr ; T.Mambetov ; Nurzhan ; Kelgenbayev ; Daniyar ; Dosmanbetov ; Bagila ; Maisupova ; 张同文
  • 英文作者:LIU Rui;WANG Yong-hui;JIANG Sheng-xia;ZHANG Rui-bo;QIN Li;Bulkajyr T.Mambetov;Nurzhan Kelgenbayev;Daniyar Dosmanbetov;Bagila Maisupova;ZHANG Tong-wen;College of Geographical Science and Tourism,Xinjiang Normal University;Institute of Desert Meteorology,China Meteorological Administration;Key Laboratory of Tree-ring Physicochemical Research of China Meteorological Administration;Almaty Institute of Forestry,Kazakhstan Ministry of Agriculture;
  • 关键词:阿尔泰山 ; 西伯利亚云杉 ; 西伯利亚落叶松 ; 树轮宽度 ; 径向生长 ; 响应分异 ; 哈萨克斯坦
  • 英文关键词:Altay Mountains;;Picea obovata;;Larix sibirica;;tree-ring width;;radial growth;;divergence response;;Kazakhstan
  • 中文刊名:GHQJ
  • 英文刊名:Arid Zone Research
  • 机构:新疆师范大学地理科学与旅游学院;中国气象局乌鲁木齐沙漠气象研究所;中国气象局树木年轮理化研究重点实验室;哈萨克斯坦农业部阿拉木图森林研究所;
  • 出版日期:2019-03-22 17:28
  • 出版单位:干旱区研究
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(41605047);; 上海合作组织科技伙伴计划(2017E01032);; 自治区科技人才培养项目(qn2015bs025);; 新疆维吾尔自治区重点实验室开放课题(2016D03005)共同资助
  • 语种:中文;
  • 页:GHQJ201903024
  • 页数:11
  • CN:03
  • ISSN:65-1095/X
  • 分类号:198-208
摘要
针对哈萨克斯坦阿尔泰山南坡西伯利亚云杉(Picea obovata)和西伯利亚落叶松(Larix sibirica)开展树轮研究,建立树轮年表,计算年平均树轮宽度值和年平均断面积生长量(BAI),并分析在1988年发生升温突变前后,这2个树种树轮宽度指数变化趋势,及其树木径向生长对气候因子的响应。结果表明:在升温突变前后,2个树种树轮宽度指数变化趋势一致。但是,在升温突变后,其变化趋势均由不显著增加转为显著下降。即树木径向生长减缓;升温突变后,2个树种树木径向生长对降水的响应有所减弱,而对气温的响应有所增强,并且发生了树轮指数和气候因子间相关性"正负转换"的情况。
        The response of the radial growth of two tree species to climatic factors before and after a sudden rise of regional temperature in 1988 was analyzed based on the research of Picea obovata and Larix sibirica on the southern slope of the Altay Mountains in Kazakhstan. The results showed that there was a good correlation between the two standardized chronologies of the two tree species,and also a high consistency with the stage of low-frequency change and a high reliability of chronological series change. The GLK values of the two chronologies were high,which indicated that their radial growth was consistent. The radial growth of P. obovata and L. sibirica was faster at their young forest age but slower from the middle forest age to the mature forest age in the study area. The variation trend of tree-ring width index of these two tree species was consistent before and after the sudden rise of temperature. Before the sudden rise of temperature,the tree-ring width index of these two tree species increased unsignificantly with a slow decrease of precipitation and a slow increase of temperature. However,after the sudden rise of temperature,the tree-ring width index of P. obovata and L. sibirica was in a significant decline trend with the slow increase of annual precipitation and annual average temperature. This showed that there was a negative impact of climate change on the growth of trees,and the growth of these two tree species might be slowed down after the sudden rise of temperature.Under global warming,the radial growth of P. obovata and L. sibirica was mainly restricted by temperature,and the influence of precipitation was relatively low. The response of L. sibirica to temperature was slightly stronger than that of P. obovata. Holistically,there was a unsignificant difference in response of the radial growth of these two tree species to climate change. The response of the growth of these two tree species to climatic factors before and after the sudden rise of regional temperature in 1988 was analyzed. The results showed that,during the period from 1960 and1988,there was a significant negative response of tree-ring width of L. sibirica to the precipitation in May that year,and to the temperature in August last year. There was a significant positive correlation between the radial growth of P. obovata and the precipitation in July of that year,but a significant negative correlation between it and the temperature in August last year. During the period from 1989 to 2016,the response of L. sibirica to the precipitation in May was no longer significant. Instead,there was a significant negative correlation between the growth of L. sibirica and the temperature in May of that year and in August last year. There was a weaker positive correlation and a higher negative correlation between the growth of this tree species and the temperature in growth season,or a change from positive correlation to negative correlation. The significant correlation between the radial growth of P. obovata and the precipitation disappeared. Instead,a negative correlation with temperature strengened,especially in August and October last year. The results showed that the positive response of the tree-ring width of P. obovata and L. sibirica to precipitation decreased but the negative response to temperature increased after the sudden rise of temperature. The response of the radial growth of P. obovata and L. sibirica to climatic factors might different after the sudden rise of temperature.
引文
[1]IPCC.Summary for Policymakers of Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2014.
    [2]刘世荣,郭泉水,王兵.中国森林生产力对气候变化响应的预测研究[J].生态学报,1998,18(5):478-483.[Liu Shirong,Guo Quanshui,Wang Bing.Prediction of net primary productivity of forests in China in response to climate change[J].Acta Ecologica Sinica,1998,18(5):478-483.]
    [3]D’Arrigo R D,Kaufmann R K,Davi N,et al.Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory,Canada[J].Global Biogeochemical Cycles,2004,18(3):GB3021.
    [4]方克艳,陈秋艳,刘昶智,等.树木年代学的研究进展[J].应用生态学报,2014,25(7):1 879-1 888.[Fang Keyan,Chen Qiuyan,Liu Changzhi,et al.Research advances in dendrochronology[J].Chinese Journal of Applied Ecology,2014,25(7):1 879-1 888.]
    [5]Buntgen U,Frank D C,Schmidhalter M,et al.Growth/climate response shift in a long subalpine spruce chronology[J].Trees Structure and Function,2006,1:99-110.
    [6]郭明明,张远东,王晓春,等.升温突变对川西马尔康树木生长的影响[J].生态学报,2015,35(22):7 464-7 474.[Guo Mingming,Zhang Yuandong,Wang Xiaochun,et al.Effects of abrupt warming on main conifer tree rings in Markang,Sichuan,China[J].Acta Ecologica Sinica,2015,35(22):7 464-7 474.]
    [7]苟晓霞,叶茂,汪亮亮,等.塔里木河上游河岸胡杨径向生长对温度的敏感性[J].干旱区研究,2018,35(4):899-904.[Gou Xiaoxia,Ye Mao,Wang Liangliang,et al.Sensitivity of radial growth of Populus euphratica to temperature in the upper reaches of the Tarim River[J].Arid Zone Research,2018,35(4):899-904.]
    [8]齐元元,尚华明,张瑞波,等.利用树轮重建玛纳斯河流域过去289 a降水变化[J].干旱区研究,2017,34(4):942-949.[Qi Yuanyuan,Shang Huaming,Zhang Ruibo,et al.The 289-year variation of precipitation reconstructed with tree-ring data in the Manas River Basin[J].Arid Zone Research,2017,34(4):942-949.]
    [9]尚华明,魏文寿,袁玉江,等.树轮记录的中天山150年降水变化特征[J].干旱区研究,2010,27(3):443-449.[Shang Huaming,Wei Wenshou,Yuan Yujiang,et al.The 150-year precipitation change recorded by tree ring in the Central Tianshan Mountains[J].Arid Zone Research,2010,27(3):443-449.]
    [10]何清,袁玉江,赵勇,等.中亚气候变化调查研究[M].北京:气象出版社,2015:137-138.[He Qing,Yuan Yujiang,Zhao Yong,et al.Investigation on Climate Change in Central Asia[M].Beijing:China Meteorological Press,2015:137-138.]
    [11]Myglana V S,Oidupaab O C,Kirdyanovc A V,et al.1929-year chronology for the Altai-Sanyan Region(Western Tuva)[J].Archaeology,Ethnology and Anthropology of Eurasia,2008,36(4):25-31.
    [12]张同文,袁玉江,喻树龙,等.用树木年轮重建阿勒泰西部5-9月365年来的月平均气温序列[J].干旱区研究,2008,25(2):288-294.[Zhang Tongwen,Yuan Yujiang,Yu Shulong,et al.The365-year of mean may-september temperature reconstructed with tree-ring data in West Altay,Xinjiang of China[J].Arid Zone Research,2008,25(2):288-294.]
    [13]姜盛夏,袁玉江,喻树龙,等.额尔齐斯河上游西伯利亚云杉树轮宽度年表特征分析及其对气候的响应[J].沙漠与绿洲气象,2015,9(2):16-23.[Jiang Shengxia,Yuan Yujiang,Yu Shulong,et al.Analyses of tree-ring width chronologies of Picea obovata Ledeb in the upper stream section of the Irtysh River and treegrowth response to climate[J].Desert and Oasis Meteorology,2015,9(2):16-23.]
    [14]尚华明,魏文寿,袁玉江,等.阿尔泰山南坡树轮宽度对气候变暖的响应[J].生态学报,2010,30(9):2 246-2 253.[Shang Huaming,Wei Wenshou,Yuan Yujiang,et al.Response of tree ring width to recent climate change,south slope of Altai Mountains[J].Acta Ecologica Sinica,2010,30(9):2 246-2 253.]
    [15]Stokes M A,Smiley T L.An Introduction to Tree-Ring Dating[M].Tucson:University of Arizona Press,1996:1-173.
    [16]Homes R L.Computer-assisted quality control in tree-ring dating and measurement[J].Tree ring Bulletin,1983,43:69-78.
    [17]Cook E R.A Time Series Analysis Approach to Tree-Ring Standardization[D].Tucson:The University of Arizona Press,1985.
    [18]Jiao L,Jiang Y,Wang M C,et al.Responses to climate change in radial growth of Piceaschrenkiana along elevations of the Eastern Tianshan Mountains,Northwest China[J].Dendrochronologia,2016,40:117-127.
    [19]Rozas V.A dendroecological reconstruction of age structure and past management,in an old-growth pollarded parkland in Northern Spain[J].Forest Ecology and Management,2004,195(1/2):205-219.
    [20]于健,罗春旺,徐倩倩,等.长白山原始林红松径向生长及林分碳汇潜力[J].生态学报,2016,36(9):2 626-2 636.[Yu Jian,Luo Chunwang,Xu Qianqian,et al.Radial growth of Pinus koraiensis and carbon sequastration potential of the old growth forest in Changbai Mountain,Northeast China[J].Acta Ecologica Sinica,2016,36(9):2 626-2 636.]
    [21]Schweingruber F H,Briffa K R,Nogler P.A tree-ring densitometric transect from Alaska to Labrador[J].International Journal of Biometeorology,1993,37(3):151-169.
    [22]Wang H,Shao X M,Jiang Y,et al.The impacts of climate change on the radial growth of Pinus oraiensis along elevations of Changbai Mountain in Northeastern China[J].Forest Ecology and Management,2013,289:333-340.
    [23]Harris I,Jones P D,Osborn T J,et al.Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset[J].International Journal of Climatology,2014,34:623-642.
    [24]Zhang Tongwen,Yuan Yujiang,He Qing,et al.Development of tree-ring width chronologies and tree-growth response to climate in the mountains surrounding the Issyk-Kul Lake,Central Asia[J].Dendrochronologia,2014,32(3):230-236.
    [25]李晓青,刘贤德,王立,等.祁连山青海云杉直径结构及其对径向生长的影响[J].干旱区研究,2017,34(5):1 117-1 123.[Li Xiaoqing,Liu Xiande,Wang Li,et al.Diameter structure and its effect on radial growth of Picea crassifolia forest in the Qilian Mountains[J].Arid Zone Research,2017,34(5):1 117-1 123.]
    [26]雷泽勇,周晏平,赵国军,等.竞争对辽宁西北部樟子松人工固沙林树高生长的影响[J].干旱区研究,2018,35(1):144-149.[Lei Zeyong,Zhou Yanping,Zhao Guojun,et al.Effects of competition on tree height growth of sand-fixation plantations of Pinus sylvestris var.mongolica in Northwest Liaoning Province[J].Arid Zone Research,2018,35(1):144-149.]
    [27]郭滨德,张远东,王晓春.川西高原不同坡向云、冷杉树轮对快速升温的响应差异[J].应用生态学报,2016,27(2):354-364.[Guo Binde,Zhang Yuandong,Wang Xiaochun.Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in Western Sichuan,China[J].Chinese Journal of Applied Ecology,2016,27(2):354-364.]
    [28]Wilmking M,Myers-Smith I.Changing climate sensitivity of black spruce(Picea mariana Mill.)in a peatland-forest landscape in Interior Alaska[J].Dendrochronologia,2008,25(3):167-175.
    [29]曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998:375-383.[Cao Yizhi,Song Zhanwu.Plant Physiology[M].Lanzhou:University of Lanzhou Press,1998:375-383.]
    [30]郭建平,高素华.CO2浓度和辐射强度变化对沙柳光合作用速率影响的模拟研究[J].生态学报,2004,24(2):181-185.[Guo Jianping,Gao Suhua.Growth chamber study on the impact of CO2concentration and radiant intensity on Salix psammophila photosynthetic rate[J].Acta Ecologica Sinica,2004,24(2):181-185.]
    [31]张艳静,郑宏伟,于瑞德,等.天山中西段不同地区雪岭云杉径向生长对气候变暖的响应差异[J].植物研究,2017,37(3):340-350.[Zhang Yanjing,Zheng Hongwei,Yu Ruide,et al.Response differences of radial growth of Picea schrenkiana to climate warming in Midwestern Tianshan Mountains[J].Bulletin of Botanical Research,2017,37(3):340-350.]
    [32]尹红,王靖,刘洪滨,等.小兴安岭红松径向生长对未来气候变化的响应[J].生态学报,2011,31(24):7 343-7 350.[Yin Hong,Wang Jing,Liu Hongbin,et al.A research on the response of the radial growth of Pinus koraiensis to future climate change in the Xiaoxing’anling[J].Acta Ecologica Sinica,2011,31(24):7 343-7 350.]
    [33]白学平,常永兴,张先亮,等.近30年快速升温对两种典型小地形上兴安落叶松径向生长的影响[J].应用生态学报,2016,27(12):3 853-3 861.[Bai Xueping,Chang Yongxing,Zhang Xianliang,et al.Impacts of rapid warming on radial growth of Larix gmeliniion two typical micro-topographies in the recent 30 years[J].Chinese Journal of Applied Ecology,2016,27(12):3 853-3 861.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700