用户名: 密码: 验证码:
采用涡流管和喷射器的新型LNG汽化加热系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Novel heating systems for LNG regasification with vortex tube and ejector
  • 作者:郭向吉 ; 张升升 ; 张博 ; 李玲
  • 英文作者:GUO Xiangji;ZHANG Shengsheng;ZHANG Bo;LI Ling;Key Laboratory of Complex Energy Conversion and Utilization, Liaoning Province, School of Energy and Power Engineering, Dalian University of Technology;Research and Design Center, China Academy of Launch Vehicle Technology;
  • 关键词:LNG汽化 ; 空温式汽化器 ; 涡流管 ; 喷射器 ; 节能
  • 英文关键词:LNG regasification;;ambient air vaporizer;;vortex tube;;ejector;;energy saving
  • 中文刊名:DLLG
  • 英文刊名:Journal of Dalian University of Technology
  • 机构:大连理工大学能源与动力学院辽宁省复杂能源转换和高效利用重点实验室;中国运载火箭技术研究院研究发展中心;
  • 出版日期:2019-03-15
  • 出版单位:大连理工大学学报
  • 年:2019
  • 期:v.59
  • 基金:国家自然科学基金资助项目(51876020);; 大连市科技创新基金资助项目(2018J12SN073)
  • 语种:中文;
  • 页:DLLG201902004
  • 页数:8
  • CN:02
  • ISSN:21-1117/N
  • 分类号:25-32
摘要
首次提出了两种新型空气源热泵,核心部件包括涡流管、喷射器和空温式换热器,用于从低温环境中吸收热量.该空气源热泵取代了传统LNG汽化过程中水浴加热器的位置,吸收到的热量可用于补偿从空温式汽化器吸热后温度仍不达标的天然气,以达到降低甚至无须水浴加热器耗能的目的.在这两种新型加热系统中,其主要原理是气体在涡流管冷端温度降低,使得天然气可以在空温式换热器中继续从环境吸收热量.除了给出详细的系统描述之外,还建立了数学定量模型,并设定了具体工况,对两种加热系统的性能、能耗和相对于传统加热系统的节能比进行了计算和分析.结果表明,当气体升温要求在5~30℃时,不带有喷射器的加热系统节能比在50%以上,而带有喷射器的加热系统节能比可在90%以上.
        Two novel air-source heat pumps, mainly consisting of vortex tube, ejector and ambient air heat exchanger, are proposed to absorb heat from low-temperature environment. Such heating system will be supplemented to the LNG regasification process, taking the place of water-bath heater, to minimize electricity or natural gas consumption. In these two novel heating systems, due to the gas temperature drop at the cold end of the vortex tube, the natural gas can continue absorbing heat from the environment in the ambient air heat exchanger. In addition to giving a detailed description of the system, a mathematical quantitative model is also established. Through setting specific working conditions, the performance of the two heating systems, energy consumption and energy saving ratio relative to the traditional heating system are calculated and analyzed.The results show that when the gas temperature requirement is between 5 ℃ and 30 ℃, the energy saving ratio of the heating system without ejector is above 50%, while that of the heating system with ejector is above 90%.
引文
[1]KANBUR B B, XIANG Liming, DUBEY S, et al. Cold utilization systems of LNG: A review [J]. Renewable and Sustainable Energy Reviews, 2017, 79:1171-1188.
    [2]FAHMY M, NABIH H I, EL-RASOUL T A. Optimization and comparative analysis of LNG regasification processes [J]. Energy, 2015, 91:371-385.
    [3]MOKHATAB S, MAK J Y, VALAPPIL J V, et al. Handbook of Liquefied Natural Gas [M]. Houston: Gulf Professional Publishing, 2016.
    [4]居万美. LNG气化站的工艺设计分析 [J]. 中国石油和化工标准与质量, 2013, 33(22):42. JU Wanmei. Processes design and analysis of LNG regasification station [J]. China Petroleum and Chemical Standard and Quality, 2013, 33(22):42. (in Chinese)
    [5]张博,郭向吉. 一种可实现从低温空气环境下持续吸热的液化天然气气化系统: CN201711096355.5 [P]. 2017-11-09. ZHANG Bo, GUO Xiangji. A LNG regasification system which can realize sustainably absorbing heat from ambient air: CN201711096355.5 [P]. 2017-11-09. (in Chinese)
    [6]张博,郭向吉. 一种利用压力驱动的液化天然气气化加热系统: CN201711096590.2 [P]. 2017-11-09. ZHANG Bo, GUO Xiangji. A pressure-driven heating LNG regasification and heating system: CN201711096590.2 [P]. 2017-11-09. (in Chinese)
    [7]ZHANG Bo, GUO Xiangji. Prospective applications of Ranque-Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation [J]. Renewable and Sustainable Energy Reviews, 2018, 89:135-150.
    [8]GUO Xiangji, ZHANG Bo. Analysis of the unsteady heat and mass transfer processes in a Ranque-Hilsch vortex tube: Tube optimization criteria [J]. International Journal of Heat and Mass Transfer, 2018, 127:68-79.
    [9]GUO Xiangji, ZHANG Bo. Computational investigation of processing vortex breakdown and energy separation in a Ranque-Hilsch vortex tube [J]. International Journal of Refrigeration, 2018, 85:42-57.
    [10]ZHANG Bo, GUO Xiangji, YANG Zhuqiang. Analysis on the fluid flow in vortex tube with vortex periodical oscillation characteristics [J]. International Journal of Heat and Mass Transfer, 2016, 103:1166-1175.
    [11]SUBUDHI S, SEN M. Review of Ranque-Hilsch vortex tube experiments using air [J]. Renewable and Sustainable Energy Reviews, 2015, 52(Supplement s396):172-178.
    [12]SKYE H M, NELLIS G F, KLEIN S A. Comparison of CFD analysis to empirical data in a commercial vortex tube [J]. International Journal of Refrigeration, 2006, 29(1):71-80.
    [13]SECCHIAROLI A, RICCI R, MONTELPARE S, et al. Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube [J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24):5496-5511.
    [14]GALANIS N, SORIN M. Ejector design and performance prediction [J]. International Journal of Thermal Sciences, 2016, 104:315-329.
    [15]ZHANG Bo, SONG Xutong, LV Jinsheng, et al. Study on the key ejector structures of the waste heat-driven ejector air conditioning system with R236fa as working fluid [J]. Energy and Buildings, 2012, 49:209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700