用户名: 密码: 验证码:
青藏高原东缘中生代若尔盖古高原的发现及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discovery of the Mesozoic Zoige paleo-plateau in eastern Tibetan Plateau and its geological significance
  • 作者:刘树根 ; 李智武 ; Peter ; J.J.Kamp ; 冉波 ; 李金玺 ; 邓宾 ; 王国芝 ; Ganqing ; XU ; Martin ; Daniík ; 杨迪 ; 王自剑 ; 李祥辉 ; 刘顺 ; 李巨初
  • 英文作者:LIU Shugen;LI Zhiwu;Peter J.J.Kamp;RAN Bo;LI Jinxi;DENG Bin;WANG Guozhi;Ganqing XU;Martin Daniík;YANG Di;WANG Zijian;LI Xianghui;LIU Shun;LI Juchu;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology;School of Science,University of Waikato;John de Laeter Centre,The Institute for Geoscience Research,Department of Applied Geology and Applied Physics,Curtin University;School of Earth Sciences and Engineering,Nanjing University;
  • 关键词:构造变形 ; 隆升剥蚀 ; 沉积记录 ; 地壳加厚 ; 中生代 ; 古高原 ; 若尔盖地块 ; 青藏高原
  • 英文关键词:tectonic deformation;;exhumation;;sedimentary record;;crustal thickening;;Mesozoic;;paleo-plateau;;Zoige block;;Tibetan Plateau
  • 中文刊名:CDLG
  • 英文刊名:Journal of Chengdu University of Technology(Science & Technology Edition)
  • 机构:油气藏地质及开发工程国家重点实验室(成都理工大学);School of Science University of Waikato;School of ScienceUniversity of Waikato;Johnde Laeter Centre,The Institute for Geoscience Research,Department of Applied Geology and Applied Physics,Curtin University;南京大学地球科学与工程学院;
  • 出版日期:2019-01-21 07:01
  • 出版单位:成都理工大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.212
  • 基金:国家自然科学基金项目(41230313,41472107)
  • 语种:中文;
  • 页:CDLG201901001
  • 页数:28
  • CN:01
  • ISSN:51-1634/N
  • 分类号:3-30
摘要
40 Ma B.P."原青藏高原"的提出使得青藏高原的早期隆升历史受到越来越多的关注,但其向东的延伸情况不明。青藏高原东缘若尔盖高原、龙门山冲断带和四川盆地有机地构建了一个完整的原-山-盆体系,成为揭示青藏高原隆升和生长的理想场所,而位于高原内部若尔盖地块的红参1井更为此提供了宝贵素材。基于红参1井的构造恢复和低温热年代学研究结果,结合区域上已有的低温热年代学和古高程数据,提出青藏高原东缘在早新生代印-亚大陆碰撞之前就已形成了高原,称之为若尔盖古高原,并从基底构造属性、构造变形、地壳缩短与增厚、沉积记录等方面对其进行了论证。红参1井钻井剖面构造恢复结果揭示所钻遇7 000余米的三叠系复理石层系实际上有46%的厚度是由构造重复所致,连同广泛发育的晚三叠世埃达克质花岗岩以及利用中性岩浆岩Sr/Y比值估算的地壳厚度,共同表明青藏高原东部松潘-甘孜地区在晚三叠世就已发生了实质性的地壳加厚。红参1井多重低温热年代学[锆石(U-Th)/He,磷灰石裂变径迹和(U-Th)/He]测试结果揭示若尔盖地块分别在白垩纪中期(约120 Ma B.P.和约80 Ma B.P.)经历了2次快速的冷却事件,累计剥蚀厚度达5 km,之后转入极其缓慢的冷却过程,暗示其已进入高原化阶段;而在整个新生代期间处于近乎"零"剥蚀的状态而被动地抬升到现今高度(不同于常见的山脉隆升,地块隆升代表了一定范围的区域整体抬升)。因此,青藏高原东部若尔盖地块最晚在白垩纪末期就已形成高原,即若尔盖古高原,其范围可能包括三叠系复理石层系覆盖的大部分松潘-甘孜地区,并可能向西与羌塘古高原相连,构成羌塘-若尔盖古高原。若尔盖古高原的形成不仅造成四川盆地西缘在白垩纪中期出现了重要的物源转变,更重要的是加剧了青藏高原东缘白垩纪气候干旱化,出现了大量沙漠沉积和膏盐沉积。若尔盖古高原的发现不仅有助于深化对青藏高原隆升和生长过程的理解,也将引发对青藏高原形成机制的重新思考以及对其气候-环境-资源效应的关注。
        The Zoige plateau, Longmenshan thrust belt and Sichuan Basin on the eastern margin of the Tibetan Plateau constitute a united plateau-mountain-basin geodynamic system and the borehole Hongcan 1(Well HC1) in the Zoige block provides extremely valuable materials for unraveling the uplift, propagation mechanism and eastward extension of the Tibetan Plateau. Based on the structural restoration and low-temperature thermochronology study of the Well HC1, combined with the previous published low-temperature thermochronology and paleo-elevation data, it is proposed that a paleo-plateau, here referred to as the Zoige paleo-plateau, had developed in the eastern Tibetan Plateau prior to the India-Asia collision during the Mesozoic, which is further demonstrated from several aspects such as basement tectonic attribution, deformation, crustal shortening and thickening, and sedimentary records. The structural recovery of the drilling well profile of the Well HC1 reveals that about 46% of the thickness(>7 km of the Triassic flysch strata) was actually caused by structural repetition. The extensive occurrence of the late Triassic adakitic granites and estimated crustal thickness through the Sr/Y ratio of the neutral magmatic rocks imply that substantial crustal thickening occurred in the Songpan-Ganzi area in the eastern Tibetan Plateau during the late Triassic. Multiple low-temperature thermochronology analyses for the Well HC1 [zircon(U-Th)/He, apatite fission track and(U-Th)/He)] reveal that the Zoige block experienced two rapid cooling events at ~120 Ma B.P. and ~80 Ma B.P.(Cretaceous) respectively, with a cumulative exhumation thickness of about 5 km, followed by an extremely slow cooling process thereafter, suggesting that the Zoige block has evolved into a peneplain with significant topography since late Cretaceous, and has been passively uplifted to the present elevation during the entire Cenozoic in a state of near-zero erosion. Therefore, the Zoige block in the eastern Tibetan Plateau has become a plateau no later than the end of the Cretaceous. It is considered that the Zoige paleo-plateau might include most of the Songpan-Ganzi area covered by the Triassic flysch strata, and they connect in the west to the Qiangtang paleo-plateau and form the Qiangtang-Zoige paleo-plateau. The formation of the Zoige paleo-plateau not only caused important provenance change in the west margin of Sichuan Basin during the mid-Cretaceous, but also aggravated the Cretaceous aridification in the eastern Tibetan Plateau and lead to a lot of desert sedimentation and salt deposition. The proposition of the Zoige paleo-plateau may deepen the understanding of the uplift and growth process of the Tibetan Plateau, and promote the formation mechanism research of the Tibetan Plateau and its climate-environment-resource effects.
引文
[1] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine [J]. Geology, 1982, 10: 611-616.
    [2] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet [J]. Science, 1992, 255: 1663-1670.
    [3] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon [J]. Reviews of Geophysics, 1993, 31: 357-396.
    [4] Fielding E J. Tibet uplift and erosion [J]. Tectonophysics, 1996, 260: 55-84.
    [5] Yin A, Harrison T M. Geologic evolution of the Himalayan Tibetan Orogen [J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
    [6] Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau [J]. Science, 2008, 321: 1054-1058.
    [7] Wang C, Dai J, Zhao X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review [J]. Tectonophysics, 2014, 621: 1-43.
    [8] Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature, 1995, 374: 49-52.
    [9] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439: 677-681.
    [10] Wang C, Zhao X, Liu Z, et al. Constraints on the early uplift history of the Tibetan Plateau [J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992.
    [11] Rohrmann A, Kapp P, Carrapa B, et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma [J]. Geology, 2012, 40: 187-190.
    [12] England P, Houseman G. Extension during continental convergence, with application to the Tibetan plateau [J]. Journal of Geophysical Research, 1989, 94: 17561-17579.
    [13] Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks [J]. Nature, 1993, 364: 50-54.
    [14] Chung S, Lo C, Lee T, et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago [J]. Nature, 1998, 394: 769-773.
    [15] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau [J]. Science, 2001, 294: 1671-1677.
    [16] England P, Searle M. The Cretaceous-Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet [J]. Tectonics, 1986, 5(1): 1-14.
    [17] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan Plateau? [J]. Geology, 1997, 25: 719-722.
    [18] Houseman G, England P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision [J]. Journal of Geophysical Research, 1993, 98(B7): 12233-12249.
    [19] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet [J]. Tectonics, 2003, 22: 1029. DOI:10.1029/2001TC001332.
    [20] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet [J]. Geological Society of America Bulletin, 2005, 117: 865-878.
    [21] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Cretaceous Lhasa-Qiangtang and Indo-Asian collisions in the Nima basin area, central Tibet [J]. Geological Society of America Bulletin, 2007, 119: 917-933.
    [22] Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed [J]. GSA Today, 2007, 17: 4-9.
    [23] Van der Beek P, J van Melle S, Guillot A, et al. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya [J]. Nature Geoscience, 2009, 2: 364-368.
    [24] Wang E, Kirby E, Furlong K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic [J]. Nature Geoscience, 2012, 5(9): 640-645.
    [25] Ge Y K, Dai J G, Wang C S, et al. Cenozoic thermo-tectonic evolution of the Gangdese batholith constrained by low-temperature thermochronology [J]. Gondwana Research, 2017, 41: 451-462.
    [26] Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints [J]. Tectonophysics, 2001, 343: 111-134.
    [27] Kirby E, Reiners P W, Krol M A, et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-TH)/He thermochronology [J]. Tectonics, 2002, 21(1). DOI:10.1029/2000TC001246.
    [28] Clark M K, House M, Royden L, et al. Late Cenozoic uplift of southeastern Tibet [J]. Geology, 2005, 33(6): 525-528.
    [29] Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? [J]. GSA Bulletin, 2006, 118: 651-671.
    [30] Yuan W, Dong J, Wang S C, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27: 847-856.
    [31] Ritts B D, Yue Y, Graham S A, et al. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan [J]. American Journal of Science, 2008, 308: 657-678.
    [32] Godard V, Pik R, Lavé J, et al. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U-Th)/He thermochronometry [J]. Tectonics, 2009, 28, TC5009. DOI:10.1029/2008TC002407.
    [33] Zheng D, Clark M K, Zhang P, et al. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau) [J]. Geosphere, 2010, 6: 937-941.
    [34] Ouimet W, Whipple K, Royden L, et al. Regional incision of the eastern margin of the Tibetan Plateau [J]. Lithosphere, 2010, 2(1): 50-63.
    [35] Duvall A R, Clark M K, Kirby E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis [J]. Tectonics, 2013, 32: 1190-1211.
    [36] Tian Y T, Kohn B P, Gleadow A J W, et al. Constructing the Longmen Shan eastern Tibetan Plateau margin: Insights from low-temperature thermochronology [J]. Tectonics, 2013, 32: 576-592.
    [37] Tian Y T, Li R, Tang Y, et al. Thermochronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau [J]. Tectonics, 2018, 37: 1733-1749.
    [38] Tan X B, Xu X W, Lee Y H, et al. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology [J]. Tectonophysics, 2017, 712/713: 145-155.
    [39] Dai J G, Wang C S, Hourigan J, et al. Insights into the early Tibetan Plateau from (U-Th)/He thermochronology [J]. Journal of the Geological Society, London, 2013, 170: 917-927.
    [40] Li G W, Kohn B, Sandiford M, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet: Insights from low temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 101-112.
    [41] Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin [J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
    [42] Hoke G D. Geochronology transforms our view of how Tibet’s southeast margin evolved [J]. Geology, 2018, 46(1): 95-96.
    [43] Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon [J]. Geology, 2017, 45: 215-218.
    [44] Xu Q, Ding L, Spicer R A, et al. Stable isotopes reveal southward growth of the Himalayan-Tibetan Plateau since the Paleocene [J]. Gondwana Research, 2018, 54: 50-61.
    [45] Zhu D C, Wang Q, Cawood P A, et al. Raising the Gangdese Mountains in southern Tibet [J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 214-223.
    [46] Wang J G, Hu X, Garzanti E, et al. Early Cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate [J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 5748-5765.
    [47] 马元,许志琴,李广伟,等.藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J].岩石学报,2017, 33(12):3861-3872.Ma Y, Xu Z Q, Li G W, et al. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-Plateau, South Tibet [J]. Acta Petrologica Sinica, 2017, 33(12): 3861-3872. (in Chinese)
    [48] Taylor M, Yin A. Active structures of the Himalaya-Tibet orogeny and their relationships to earthquake distribution, contemporary strain field and Cenozoic volcanism [J]. Geosphere, 2009, 5: 199-214. DOI:10.1130/GES00217.1.
    [49] 王立全,潘桂棠,丁俊,等.青藏高原及邻区地质图及说明书(1∶1500000)[M].北京:地质出版社,2013.Wang L Q, Pan G T, Ding J, et al. Geological Map and Description of Qinghai-Tibet Plateau and Its Adjacent Areas[M]. Beijing: Geological Publishing House, 2013. (in Chinese)
    [50] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
    [51] Zeitler P. Cooling history of the NW Himalaya, Pakistan [J]. Tectonics, 1985, 4(1): 127-151.
    [52] Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing [J]. Tectonics, 1995, 14: 223-236.
    [53] 刘树根,罗志立,戴苏兰,等.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3): 205-214.Liu S G, Luo Z L, Dai S L, et al. The uplift of the Longmenshan thrust belt and subsidence of the western Sichuan Basin[J]. Acta Geologica Sinica, 1995, 69(3): 205-214. (in Chinese)
    [54] Arne D, Worley B, Wilson C, et al. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau [J]. Tectonophysics, 1997, 280: 239-256.
    [55] Xu G, Kamp P J. Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan Plateau: Constraints from fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2000, 105(B8): 19231-19251.
    [56] Schlup M, Carter A, Cosca M, et al. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: The Indus River-Tso Morari transect, NW Himalaya[J]. Journal of the Geological Society, London, 2003, 160: 385-399.
    [57] Reid A J, Fowler A P, Phillips D, et al. Thermochronology of the Yidun Arc, central eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-feldspar and apatite fission track data[J]. Journal of Asian Earth Sciences, 2005, 25(6): 915-935.
    [58] 施小斌,丘学林,刘海龄,等.滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据[J].地球物理学报,2006,49(1):135-142.Shi X B, Qiu X L, Liu H L, et al. Cenozoic cooling history of Lincang granitoid batholith, western Yunnan: Evidence from fission track data[J]. Chinese Journal of Geophysics, 2006, 49(1): 135-142. (in Chinese)
    [59] Lai Q, Ding L, Wang H, et al. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology [J]. Scientia Sinica (Terrae), 2007, 50(2): 172-183.
    [60] Kumar R, Lal N, Singh S D, et al. Cooling and exhumation of the Trans-Himalayan Ladakh batholith as constrained by fission track apatite and zircon ages [J]. Current Science, 2007, 92: 490-496.
    [61] Kirstein L A, Foeken J P T, Van der Beek, et al. Cenozoic unroofing history of the Ladakh batholith, western Himalaya, constrained by thermochronology and numerical modeling[J]. Journal of Geological Social London, 2009, 166: 667-678.
    [62] 李智武,陈洪德,刘树根,等.龙门山冲断隆升及其走向差异的裂变径迹证据[J].地质科学,2010,45(4):944-968.Li Z W, Chen H D, Liu S G, et al. Differential uplift driven by thrusting and its lateral variation along the Longmenshan belt, western Sichuan, China: Evidence from fission track thermochronology[J]. Chinese Journal of Geology, 2010, 45(4): 944-968. (in Chinese)
    [63] Clark M K, Farley K A, Zheng D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages [J]. Earth and Planetary Science Letters, 2010, 296 (1/2): 78-88.
    [64] Wilson C J L, Fowler A P. Denudational response to surface uplift in east Tibet: Evidence from apatite fission-track thermochronology [J]. Geological Society of America Bulletin, 2011, 123(9/10): 1966-1987.
    [65] Hetzel R, Dunkl I, Haider V, et al. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift [J]. Geology, 2011, 39: 983-986.
    [66] Haider V L, Dunkl I, Eynatten H V, et al. Cretaceous to Cenozoic evolution of the northern Lhasa terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau [J]. Journal of Asian Earth Science, 2013, 70/71: 79-98.
    [67] Cook K L, Royden L H, Burchfiel B C, et al. Constraints on Cenozoic tectonics in the southwestern Longmen Shan from low-temperature thermochronology [J]. Lithosphere, 2013, 5: 393-406.
    [68] Tian Y T, Kohn B P, Hu S B, et al. Post-orogenic rigid behavior of the eastern Songpan-Ganze terrane: Insights from low-temperature thermochronology and implications for intracontinental deformation in central Asia [J]. Geochemistry, Geophysics, Geosystems, 2014. DOI:10.1002/2013GC004951.
    [69] Tian Y T, Kohn B P, Gleadow A J, et al. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau [J]. Journal of Geophysical Research: Solid Earth, 2014, 119 (1): 676-698.
    [70] Tan X B, Lee Y H, Chen W Y, et al. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet [J]. Journal of Asian Earth Sciences, 2014, 81: 91-104.
    [71] Carrapa B, Orme D, DeCelles P, et al. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: Response to slab dynamics and erosion [J]. Geology, 2014, 42(5): 443-446.
    [72] Zeitler P K, Meltzer A S, Brown L, et al. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet [J]. Geological Society of America Special Paper, 2014, 507: 23-58.
    [73] Tian Y T, Kohn B P, Hu S B, et al. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics [J]. Geophysical Research Letters, 2015, 42: 29-35.
    [74] Li G W, Tian Y T, Kohn B P, et al. Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications [J]. Tectonophysics, 2015, 643: 80-93.
    [75] Zhang Y Z, Replumaz A, Wang G C, et al. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet [J]. Tectonics, 2015, 34. DOI:10.1002/2014TC003671.
    [76] Zhang H P, Oskin M E, Liu-Zeng J, et al. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185.
    [77] Yang R, Fellin M G, Herman F, et al. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet [J]. Earth and Planetary Science Letters, 2016, 433: 10-20.
    [78] Tan X B, Lee Y H, Xu X W, et al. Cenozoic exhumation of the Danba antiform, eastern Tibet: Evidence from low-temperature thermochronology [J]. Lithosphere, 2017, 9(4): 534-544.
    [79] Yang Z, Shen C, Ratschbacher L, et al. Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4712-4740.
    [80] Ansberque C, Godard V, Olivetti V, et al. Differential exhumation across the Longriba fault system: Implications for the eastern Tibetan Plateau [J]. Tectonics, 2018, 37: 663-679.
    [81] Liu-Zeng J, Zhang J Y, McPhillips D, et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 2018, 490: 62-76.
    [82] Tang Y, Zhang Y, Tong L. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence [J]. Journal of Asian Earth Sciences, 2018, 151: 285-300.
    [83] Nie J, Ruetenik G, Gallagher K, et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, https://doi.org/10.1038/s41561-018-0244-z.
    [84] Wang Y, Zhang P, Schoenbohm L M, et al. Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the late Cenozoic [J]. Tectonics, 2018, 37: 2675-2694.
    [85] Saylor J, Quade J, Dettman D, et al. The late Miocene through present paleoelevation history of southwestern Tibet [J]. American Journal of Science, 2009, 309: 1-42.
    [86] Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years [J]. Nature, 2003, 421: 622-624.
    [87] Currie B, Rowley D, Tabor N. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen [J]. Geology, 2005, 33: 181-184.
    [88] DeCelles P, Quade J, Kapp P, et al. High and dry in central Tibet during the late Oligocene [J]. Earth and Planetary Science Letters, 2007, 253: 389-401.
    [89] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers [J]. Earth and Planetary Science Letters, 2009, 287: 64-76.
    [90] Xu Q, Ding L, Zhang L, et al. Paleogene high elevations in the Qiangtang terrane, central Tibetan Plateau [J]. Earth and Planetary Science Letters, 2013, 362: 31-42.
    [91] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau [J]. Journal of Geology, 2005, 113: 517-533.
    [92] Xu Q, Liu X, Ding L. Miocene high-elevation landscape of the eastern Tibetan Plateau [J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 4254-4267.
    [93] Tang M Y, Liu-Zeng J, Hoke G D, et al. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin, SE-Central Tibet [J]. Tectonophysics, 2017, 712/713: 170-181.
    [94] Li S, Currie B S, Rowley D B, et al. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region [J]. Earth and Planetary Science Letters, 2015, 432: 415-424.
    [95] Hoke G D, Liu-Zeng J, Hren M T, et al. Stable isotopes reveal high southeast Tibetan plateau margin since the Paleogene [J]. Earth and Planetary Science Letters, 2014, 394: 270-278.
    [96] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow [J]. Geology, 2000, 28: 703-706.
    [97] Burchfiel B C, Chen Z, Lin Y. Tectonics of the Longmenshan and adjacent regions, central China [J]. International Geology Review, 1995, 37: 661-735.
    [98] Chen Z, Burchfiel B C, Liu Y, et al. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation [J]. Journal of Geophysical Research, 2000, 105(B7): 16215-16227.
    [99] Densmore A L, Elli M A, Li Y, et al. Active tectonics of the Beichuan and Pengguan faults at the eastern of the Tibetan Plateau [J]. Tectonics, 2007, 26: TC4005. DOI:10.1029/2006TC001987.
    [100] Xu X, Wen X, Yu G, et al. Coseismic reverse and oblique-slip surface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China [J]. Geology, 2009, 37(6): 515-518.
    [101] Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake [J]. Nature, 2009, 458: 194-197.
    [102] Bai D, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging [J]. Nature Geoscience, 2010, 1-5. DOI:10.1038/NGEO830.
    [103] Liu Q Y, Van der Hilst R D, Li Y, et al. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults [J]. Nature Geoscience, 2014. DOI:10.1038/NGEO2130.
    [104] Lev E, Long M D, Van der Hilst R D, et al. Seismic anisotropy in Eastern Tibet form shear wave splitting reveals changes in lithospheric deformation [J]. Earth and Planetary Science Letters, 2006, 251(3/4): 293-304.
    [105] Liu-Zeng J, Tapponnier P, Gaudemer Y, et al. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution [J]. Journal of Geophysical Research, 2008, 113(F4): F04018.
    [106] 刘静,曾令森,丁林,等.青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J].地质科学,2009,44(4):1227-1255.Liu J, Zeng L S, Ding L, et al. Tectonic geomorphology,active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2009, 44(4): 1227-1255. (in Chinese)
    [107] Searle M P, Roberts N M W, Chung S L, et al. Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshuihe fault [J]. Geosphere, 2016, 12(3): 948-970. DOI:10.1130/GES01244.1.
    [108] Liu Z, Tian X B, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array [J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
    [109] 许志琴,赵中宝,彭淼,等.论“造山的高原”[J].岩石学报, 2016,32(12): 3557-3571.Xu Z Q, Zhao Z B, Peng M, et al. Review of “orogenic plateau”[J]. Acta Petrologica Sinica, 2016, 32(12): 3557-3571. (in Chinese)
    [110] Lippert P C, Van Hinsbergen D J J, Dupont-Nivet G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia [J]. Geological Society of America Special Paper, 2014, 507: 1-21.
    [111] Reiners P W, Brandon M T. Using thermochronology to understand orogenic erosion [J]. Annual Review of Earth and Planetary Science, 2006, 34(1): 419-466.
    [112] Malusà M G, Fitzgerald P G. Application of thermochronology to geologic problems: Bedrock and detrital approaches[C]// Fission-Track Thermochronology and its Application to Geology. Switzerland: Springer, 2019: 191-209.
    [113] 许志琴,李化启,侯立炜,等.青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制[J].地质通报,2007,26(10):1262-1276.Xu Z Q, Li H Q, Hou L W, et al. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 2007, 26(10): 1262-1276. (in Chinese)
    [114] Deng B, Liu S G, Li Z W, et al. Late Cretaceous tectonic change of the eastern margin of the Tibetan Plateau — Results from multisystem thermochronology [J]. Journal of the Geological Society of India, 2012, 80(2): 241-254.
    [115] Li Z W, Liu S G, Chen H D, et al. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan Basin: Constraints from fission track thermochronology [J]. Journal of Asian Earth Sciences, 2012, 47: 185-203.
    [116] Liu S G, Deng B, Jansa L, et al. Late Triassic thickening of the Songpan-Ganzi Triassic flysch at the edge of the northeastern Tibetan Plateau[J]. International Geology Review, 2013, 55(16): 2008-2015.
    [117] Kamp P J J, Liu S G, Xu G Q, et al. Cooling history of a crustal section in Eastern Tibet (Well HC1) constrained by thermochronology [J]. Acta Geologica Sinica (English Edition), 2013, 87: 57-58.
    [118] 郭勇岭.川西北地区灌县至若尔盖间构造分区之初步意见[J].地质论评,1963,21(1):6-11.Guo Y L. Tectonic division of Guanxian and Zoige in northwest Sichuan Basin [J]. Geological Review, 1963, 21(1): 6-11. (in Chinese)
    [119] 黄汲清,肖旭常,任纪舜,等.中国大地构造特征——三百万分之一中国大地构造说明书[M].北京:中国工业出版社,1964.Huang J Q, Xiao X C, Ren J S, et al. China Tectonic Instruction Book(1∶3000000) [M]. Beijing: China Industry Press, 1964. (in Chinese)
    [120] 任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980.Ren J S, Jiang C F, Zhang Z K, et al. The Geotectonic Evolution of China [M]. Beijing: Science Press, 1980. (in Chinese)
    [121] 四川省地质矿产局.1∶20万若尔盖、红原、阿坝和龙日坝幅区域地质调查报告[R].成都:四川省地质矿产局,1984.Bureau of Geology of Sichuan Province. Report on Regional Geologic Survey on Zioge, Hongyuan, Aba and Longriba Sheets in 1∶200000 Scale[R]. Chengdu: Bureau of Geology of Sichuan Province, 1984. (in Chinese)
    [122] 张季生,高锐,李秋生,等.松潘-甘孜和西秦岭造山带地球物理特征及基底构造研究[J].地质论评,2007, 53(2):261.Zhang J S, Gao R, Li Q S, et al. A study on geophysical characteristic and basement in the Songpan-Garze and Western Qinling Orogenic Belt[J]. Geological Review, 2007, 53(2): 261. (in Chinese)
    [123] 郭晓玉,高锐,G.Randy Keller,等.综合地球物理资料揭示青藏高原东缘龙日坝断裂带构造属性和大地构造意义[J].地球物理学进展,2014,29(5): 2004-2012. Guo X Y, Gao R, Keller G R, et al. Integrated geophysical study on the tectonic feature of the Longriba fault zone, eastern Tibetan Plateau, and the tectonic implications[J]. Progress in Geophysics, 2014, 29(5): 2004-2012. (in Chinese)
    [124] 王海燕,高锐,张季生,等.松潘-甘孜地块地壳性质再研究[J].地质科学,2016,51(1):41-52.Wang H Y, Gao R, Zhang J S, et al. Research of the crustal property of the Songpan-Garze block [J]. Chinese Journal of Geology, 2016, 51(1): 41-52. (in Chinese)
    [125] 王绪本,罗威,张刚,等.扇形边界条件下的龙门山壳幔电性结构特征[J].地球物理学报,2013,56(8):2718-2727.Wang X B, Luo W, Zhang G, et al. Electrical resistivity structure of Longmenshan crust-mantle under sector boundary[J]. Chinese Journal of Geophysics, 2013, 56(8): 2718-2727. (in Chinese)
    [126] 嘉世旭,张先康,赵金仁,等.若尔盖盆地及周缘褶皱造山带地壳结构——深地震测深结果[J].中国科学:地球科学,2009,39(9):1200-1208.Jia S X, Zhang X K, Zhao J R, et al. Deep seismic sounding data reveal the crustal structures beneath Zoige basin and its surrounding folded orogenic belts [J]. Scientia Sinica (Terrae), 2009, 39(9): 1200-1208. (in Chinese)
    [127] Gao R, Wang H, Zeng L, et al. The crust structures and the connection of the Songpan block and West Qinling orogen revealed by the Hezuo-Tangke deep seismic reflection profiling [J]. Tectonophysics, 2014, 634: 227-236.
    [128] Guo X, Gao R, Keller G R, et al. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 2013, 379: 72-80.
    [129] Vergne J, Wittlinger G, Qiang H, et al. Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau [J]. Earth & Planetary Science Letters, 2002, 203(1): 25-33.
    [130] Wang Y X, Mooney W, Yuan X C, et al. Crustal Structure of the Northeastern Tibetan Plateau from the Southern Tarim Basin to the Sichuan Basin, China [J]. Tectonophysics, 2012, 538: 191-208.
    [131] Liu M, Mooney W D, Li S, et al. Crustal structure of the northeastern margin of the Tibetan Plateau from the Songpan-Ganzi terrane to the Ordos Basin[J]. Tectonophysics, 2006, 420(1): 253-266.
    [132] Wang Y, Mooney W D, Yuan X, et al. Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China [J]. Tectonophysics, 2013, 584: 191-208.
    [133] Zhang Z, Klemperer S, Bai Z, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China [J]. Gondwana Research, 2011, 19(4): 994-1007.
    [134] Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 2004, 22(5): 465-481.
    [135] Roger F, Jolivet M, Malavieille J. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis [J]. Journal of Asian Earth Sciences, 2010, 39(4): 254-269.
    [136] 张宏飞,靳兰兰,张利,等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学:地球科学,2005,35(10):914-926.Zhang H F, Jin L L, Zhang L, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Scientia Sinica (Terrae), 2005, 35(10): 914-926. (in Chinese)
    [137] Zhang H F, Zhang L, Harris N, et al. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy & Petrology, 2006, 152(1): 75-88.
    [138] De Sigoyer J, Vanderhaeghe O, Duchêne S, et al. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China [J]. Journal of Asian Earth Sciences, 2014, 88(1): 192-216.
    [139] Shen Z, Lu J, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau [J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B11409. DOI:10.1029/2004JB003421.
    [140] 徐锡伟,闻学泽,陈桂华,等.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科学:地球科学,2008,38(5):529-542.Xu X W, Wen X Z, Chen G H, et al. Discovery of Longriba fault in the east of Bayan Kera Block and its tectonic significance [J]. Scientia Sinica (Terrae), 2008, 38(5): 529-542. (in Chinese)
    [141] 朱介寿.拼合的欧亚大陆岩石圈的特性与动力学[C].中国地球物理学会年会论文集.2006:1-8.Zhu J S. Lithosphere and dynamics of Indian-Eurasia continent [C]. CGU Annual Meeting. 2006: 7-8. (in Chinese)
    [142] Zhang Z, Wang Y, Chen Y, et al. Crustal structure across Longmenshan Fault belt from passive source seismic profiling[J]. Geophysical Research Letters, 2009, 36(17): 1397-1413.
    [143] Li H, Wang H, Xu Z, et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1) [J]. Tectonophysics, 2013, 584(1): 23-42.
    [144] Wang X B, Zhang G, Fang H, et al. Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau [J]. Tectonophysics, 2014, 619/620: 143-148.
    [145] 许志琴,侯立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992.Xu Z Q, Hou L W, Wang Z X. The Orogenic Process of Songpan-Ganzi Orogenic Belt in China [M]. Beijing: Geological Press, 1992. (in Chinese)
    [146] Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan Garze Fold Belt, Northeast Tibetan Plateau[J]. Journal of Structural Geology, 27(1): 101-117.
    [147] 刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.Liu S G. Formation of the Longmenshan Thrust Belt and Foreland Basin of Western Sichuan [M]. Chengdu: Chengdu Technology University Press,1993. (in Chinese)
    [148] Wallis S. Cenozoic and Mesozoic metamorphism in the Longmenshan orogen: Implications for geodynamic models of eastern Tibet[J]. Geology, 2003, 31(9): 745-748.
    [149] Xu Z, Ji S, Li H, et al. Uplift of the Longmen Shan range and the Wenchuan Earthquake[J]. Episodes, 2008, 31(3): 291-301.
    [150] Zhang H F, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination [J]. Lithos, 2007, 97(3/4): 323-335.
    [151] Nie S, Yin A, Rowley D B, et al. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China [J]. Geology, 1994, 22(11): 999-1002.
    [152] Galvé A, Hirn A, Mei J, et al. Modes of raising northeastern Tibet probed by explosion seismology[J]. Earth & Planetary Science Letters, 2002, 203(1): 35-43.
    [153] Wang C S, Gao R, Yin A, et al. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet [J]. Earth and Planetary Science Letters, 2011, 306: 279-288.
    [154] 秦江锋,赖绍聪,李永飞.扬子板块北缘碧口地区阳坝花岗闪长岩体成因研究及其地质意义[J].岩石学报,2005,21(3):697-710.Qin J F, Lai S C, Li Y F. Petrogenesis and geological significance of Yangba granodiorites from Bikou area, Northern margin of Yangtze Plate [J]. Acta Petrologica Sinica, 2005, 21(3): 697-710. (in Chinese)
    [155] 张宏飞,肖龙,张利,等.扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景[J].中国科学:地球科学,2007,37(4):460-470.Zhang H F, Xiao L, Zhang L, et al. Geochemical and Pb-Sr-Nd isotopic compositions of Indosinian granitoids from the Bikou block, northwest of the Yangtze plate: Constraints on petrogenesis, nature of deep crust and geodynamics [J]. Scientia Sinica (Terrae), 2007, 37(4): 460-470. (in Chinese)
    [156] Xiao L, Zhang H F, Clemens J D, et al. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution [J]. Lithos, 2007, 96(3/4): 436-452.
    [157] 赵永久,袁超,周美夫,等.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约[J].岩石学报,2007,23(5):995-1006.Zhao Y J, Yuan C, Zhou M F, et al. Geochemistry and petrogenesis of Laojungou and Mengtonggou granites in western Sichuan, China: Constraints on the nature of Songpan-Ganzi basement[J]. Acta Petrologica Sinica, 2007, 23(5): 995-1006. (in Chinese)
    [158] 胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义[J].岩石学报, 2005,21(3):867-880.Hu J M, Meng Q R, Shi Y R, et al. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications [J]. Acta Petrologica Sinica, 2005, 21(3): 867-880. (in Chinese)
    [159] Yuan C, Zhou M F, Sun M, et al. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth & Planetary Science Letters, 2010, 290(3): 481-492.
    [160] Chapman J B, Ducea M N, Decelles P G, et al. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera [J]. Geology, 2015. DOI:10.1130/G36996.1.
    [161] Cai H M, Zhang H F, Xu W C, et al. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Scientia Sinica (Terrae), 2010, 53: 1316-1328.
    [162] Xia L, Yan Q R, Xiang Z J, et al. Late Triassic andesitic accrtionary arc in the central Songpan-Ganzi terrane and its tectonic significance [J]. Acta Petrologica Sinica, 2017, 33(2): 579-604.
    [163] Wang Q, Li Z X, Chung S L, et al. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications [J]. Lithos, 2011, 126: 54-67.
    [164] Wang B Q, Zhou M F, Li J W, et al. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization [J]. Lithos, 2011, 127(1/2): 24-38.
    [165] Hu F Y, Ducea M H N, Liu S W, et al. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application[J]. Scientific Reports, 2017, 7: 7058. DOI:10.1038/s41598-017-07849-7.
    [166] 中国石化勘探分公司.四川盆地周缘深井地热测量与热史恢复研究[R].成都:中国石化勘探分公司, 2009.SINOPEC Exploration Branch. Study on Geothermal Measurement and Thermal History Restoration of Deep Wells Around Sichuan Basin[R]. Chengdu: SINOPEC Exploration Branch, 2009. (in Chinese)
    [167] 向芳,宋见春,罗来,等.白垩纪早期陆相特殊沉积的分布特征及气候意义[J].地学前缘,2009,16(5):48-62.Xiang F, Song J C, Luo L, et al. Distribution characteristics and climate significance of continental special deposits in the early Cretaceous[J]. Earth Science Frontiers, 2009, 16(5): 48-62. (in Chinese)
    [168] Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine [J]. American Mineralogist, 1985, 70: 1-15.
    [169] Meinhold G, Anders B, Kostopoulos D, et al. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece [J]. Sedimentary Geology, 2008, 203: 98-111.
    [170] Morton A C, Hallsworth C, Chalton B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance [J]. Marine and Petroleum Geology, 2004, 21: 393-410.
    [171] Mange M A, Morton A C. Geochemistry of heavy minerals [C]//Heavy Minerals in Use: Developments in Sedimentology 58. Amsterdam: Elsevier, 2007: 345-391.
    [172] Hu X, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma) [J]. Geology, 2015, 43(10): 859-862.
    [173] Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau [J]. Gondwana Research, 2013, 23(4): 1429-1454.
    [174] 孙高远,胡修棉.拉萨地体中部上白垩统达雄组的建立及构造隆升意义[J].地质学报,2017,91(12):2623-2637.Sun G Y, Hu X M. The establishment of the Upper Cretaceous Daxiong Formation in the central Lhasa terrane and its implications for tectonic uplifting [J]. Acta Geologica Sinica,2017, 91(12): 2623-2637. (in Chinese)
    [175] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.
    [176] Wang Q, Zhu D C, Zhao Z D, et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone [J]. Lithos, 2014, 198/199(3): 24-37.
    [177] Li Y, Wang C, Dai J, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review [J]. Earth-Science Reviews, 2015, 143: 36-61.
    [178] Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context [J]. Gondwana Research, 2006, 9(1): 24-46.
    [179] Wu C, Liu C, Yi H, et al. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 529-544.
    [180] Liu C, Wang L, Yan M, et al. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation [J]. Ore Geology Reviews, 2018, 102: 406-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700