用户名: 密码: 验证码:
逆冲断层位移—长度关系解析——以杭锦旗断裂带为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of displacement—length relationship of reverse faults:a case study of Hangjinqi fault zone
  • 作者:李书林 ; 李良 ; 贾会冲 ; 张威 ; 徐恒艺 ; 杨明慧
  • 英文作者:LI Shulin;LI Liang;JIA Huichong;ZHANG Wei;XU Hengyi;YANG Minghui;College of Geosciences,China University of Petroleum;North China Company,SINOPEC;State Key Laboratory of Prtroleum Resources and Prospecting,China University of Petroleum;
  • 关键词:逆冲断层 ; 古断距 ; 断层生长连接 ; 位移—长度关系 ; 位移模式 ; 杭锦旗断裂带 ; 鄂尔多斯盆地
  • 英文关键词:reverse fault;;ancient fault throw;;The propagation and linkage of fault;;displacement—length relationship;;displacement pattern;;Hangjinqi fault zone;;Ordos Basin
  • 中文刊名:DZLP
  • 英文刊名:Geological Review
  • 机构:中国石油大学(北京)地球科学学院;中国石化华北油气分公司勘探开发研究院;中国石油大学(北京)油气资源与探测国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地质论评
  • 年:2019
  • 期:v.65
  • 基金:国家自然科学基金资助项目(编号:41172127,41572102)的成果~~
  • 语种:中文;
  • 页:DZLP201902003
  • 页数:12
  • CN:02
  • ISSN:11-1952/P
  • 分类号:25-36
摘要
为了揭示鄂尔多斯盆地北部杭锦旗断裂带在晚石炭世—中三叠世逆冲断层生长的位移模式和位移—长度关系,本文通过地震剖面解释、地层回剥分析和断层古位移测算来厘定古断层的末端位置,明确断裂生长连接历史,并结合幂律关系,探究了断层生长模式以及断裂带岩性组合、运动学、反转和断层系统内在特征等方面的影响。研究表明,杭锦旗断裂带的构造演化受基底断裂的分段性制约。其北东走向的分段(泊尔江海子断裂东段)形成较早;在垂向上,断裂中部的位移大,向两端递减;在平面上,断裂末端与东西走向的分段(泊尔江海子断裂西段)叠覆,导致局部位移增大,最终发生硬连接。东西走向的三眼井断裂形成于晚石炭世,先后经历了断层分段、横向扩展和连接的演化阶段。乌兰吉林庙断裂作为调节带断裂,其活动相对较弱且局部发生反转。根据断层位移—长度剖面的几何形态和断层演化阶段分析,可将杭锦旗断裂带的逆冲阶段的位移模式分为4种类型:①近对称的三角状或椭圆状,代表独立断层;②左右极不对称的锯齿状或双峰状,代表断层之间发生软连接作用;③不规则波状,反映多条小型断层的连接作用;④异常尖峰状,代表大型断裂后期位移的调整。杭锦旗断裂带的D_(max)/L数据集与全球其他地区比较,要低一个数量级,可能与断裂带的后期反转有关。最后,针对杭锦旗断裂带在不同时期的构造演化和D_(max)/L变化特征,提出了断裂带逆冲阶段演化的路径模式。
        Objectives: Based on the investigation of the formation and evolution of the Hangjinqi fault zone in the northern Ordos Basin,this paper discusses the displacement evolution characteristics and influencing factors of the fault zone from the Late Carboniferous to the Middle Triassic through the fault displacement—length relationship study.Methods: Through a series of seismic section interpretations,throw and dip angles of these faults are measured. Through the stratum recovery analysis,the displacement along the faults in different periods and the location of the ancient fault tips are approximately calculated,the history of fault growth connections is determined,and the displacement—length relationships in the evolution of the reverse faults is analyzed.Results: The evolution of the Hangjinqi fault zone is controlled by the basement faults. Among them,the NEtrending fault zone evolved earlier,mainly in the form of displacement growth. The soft linkage between the fault tip and the overlying fault zone resulted in an increase of local displacement and eventually a hard linkage. the EWtrending fault zone developed in the later stage. The fault segmentation,lateral propagation,and connection process are involved; the fracture activity in the central adjustment zone is relatively weak and locally reversed.Conclusion: We find that the evolution zoning characteristics of the Hangjinqi fault zone from the Late Carboniferous to the Middle Triassic include: the east—west basement fault zone,the northeast basement fault zone,and the intermediate adjustment zone. Based on the geometry of the fault displacement—length profile and the analysis of the fault evolution stage,four types of reverse fault displacement patterns can be simply classified:(1) Nearly symmetric triangles and ellipses,representing a single fault;(2) The left—right asymmetric zigzag or double peaks,representing soft linkage between faults;(3) Irregular wavy,reflecting the connection of multiple faults;(4) Abnormal peaks,representing late displacement adjustment of large thrust fault zones. Furthermore,the evolution of the Hangjinqi fault zone has experienced a complex process of fault growth and connection. As the evolution of the fault zone,the ratio of the maximum displacement to the length of the fault will change. Compared with the stage of fault connection,the Dm ax/L of the soft connection and the connected mature fault will be higher,but the overall trend is increasing.
引文
陈全红,李文厚,胡孝林,李克永,庞军刚,郭艳琴. 2012. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析. 地质学报,86(7):1150~1162.
    丁国瑜. 1992. 有关活断层分段的一些问题. 中国地震,8(2):3~12.
    董进,张世红,姜勇彪. 2004. 正断层位移—长度关系及其研究意义. 地学前缘,11(4):575~584.
    丁燕云. 2000. 鄂尔多斯盆地北部航磁反映的构造特征. 物探与化探,24(3):197~202.
    冯乔,张小莉,王云鹏,樊爱萍,柳益群. 2006. 鄂尔多斯盆地北部上古生界油气运聚特征及其铀成矿意义. 地质学报,80(5):748~752.
    纪文明,李潍莲,刘震,雷婷. 2013. 鄂尔多斯盆地北部杭锦旗地区上古生界气源岩分析. 天然气地球科学,24(5):905~914.
    雷开宇,刘池洋,张龙,吴柏林,王建强,寸小妮,孙莉. 2017. 鄂尔多斯盆地北部中生代中晚期地层碎屑锆石U—Pb定年与物源示踪. 地质学报,91(7):1522~1541.
    李金涛,李恒. 2015. 鄂尔多斯盆地北部杭锦旗页岩气成藏条件分析. 山东工业技术,(6):92~93.
    李潍莲,纪文明,刘震,雷婷,朱景宇. 2015. 鄂尔多斯盆地北部泊尔江海子断裂对上古生界天然气成藏的控制. 现代地质,29(3):584~590.
    孙晓,李良,丁超. 2016. 鄂尔多斯盆地杭锦旗地区不整合结构类型及运移特征. 石油与天然气地质,37(2):165~172.
    孙宜朴,杨伟利,王传刚,黄宏伟,蒲泊伶. 2007. 鄂尔多斯盆地杭锦旗地区上古生界天然气成藏历史分析. 石油天然气学报,29(3):217~219.
    薛会,张金川,王毅,徐波,郭华强. 2009. 鄂北杭锦旗探区构造演化与油气关系. 大地构造与成矿学,33(2):206~214.
    谢润成,周文,李良,苏瑗,王辛. 2010. 鄂尔多斯盆地北部杭锦旗地区上古生界砂岩储层特征. 新疆地质,28(1):86~90.
    姚宗惠,张明山,曾令邦,王润生,何天翼. 2003. 鄂尔多斯盆地北部断裂分析. 石油勘探与开发,30(2):20~23.
    朱日祥,陈凌,吴福元,刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学:地球科学,41(5):583~592.
    张少华,杨明慧,罗晓华. 2015. 断裂带油气幕式运移:来自物理模拟实验的启示. 地质论评,61(5):1183~1191.
    郑喜强,严岗. 2006. 鄂尔多斯盆地北部杭锦旗地区油气圈闭类型研究.勘探地球物理进展,29(4):279~284.
    Ackermann R V, Schlische R W, Withjack M O. 2001. The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws. Journal of Structural Geology, 23(11): 1803~1819.
    Anders M H, Schlische R W. 1994. Overlapping faults, intrabasin highs, and the growth of normal faults. Journal of Geology, 102(2): 165~179.
    Baudon C, Cartwright J. 2008. The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30(8): 1072~1084.
    Bergen K J, Shaw J H. 2010. Displacement profiles and displacement—length scaling relationships of thrust faults constrained by seismic-reflection data. Geological Society of America Bulletin, 122(7~8): 1209~1219.
    Cartwright J A, Trudgill B D, Mansfield C S. 1995. Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319~1326.
    Chen Quanhong, Li Wenhou, Hu Xiaolin, Li Keyong, Pang Jungang, Guo Yanqin. 2012&. Tectonic setting and provenance analysis of late Paleozoic sedimentary rocks in the Ordos Basin. Acta Geologica Sinica, 86(7): 1150~1162.
    Cowie P A, Scholz C H. 1992a. Displacement—length scaling relationship for faults: data synthesis and discussion. Journal of Structural Geology, 14(10): 1149~1156.
    Cowie P A, Scholz C H. 1992b. Physical explanation for the displacement—length relationship of faults using a post-yield fracture mechanics model. Journal of Structural Geology, 14(10): 1133~1148.
    Cowie P A. 1998. A healing—reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8): 1075~1087.
    Darby B J, Ritts B D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage:the intraplate Western Ordos fold—thrust belt,China. Earth & Planetary Science Letters,205(1):13~24.
    Dawers N H, Anders M H, Scholz C H. 1993. Growth of normal faults: displacement—length scaling. Geology, 21(12): 1107.
    Davis G A,Darby B J. 2010. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex,Inner Mongolia,China. Geoscience Frontiers,1(1):1~20.
    Davis K, Burbank D W, Fisher D, Wallace S, Nobes D. 2005. Thrust—fault growth and segment linkage in the active ostler fault zone, New Zealand. Journal of Structural Geology, 27(8): 1528~1546.
    Ding Guoyu. 1992&. Some discussions on fault segmentation. Earthquake Research in China, 8(2): 3~12.
    Ding Yanyun. 2000&. Structural characteristics of northern Ordos Basin reflected by aeromagnetic data. Geophysical & Geochemical Exploration, 24(3): 197~584.
    Dong Jin, Zhang Shihong, Jiang Yongbiao. 2004&. The displacement—length relationship of faults and its significance. Earth Science Frontiers, 11(4): 575~584.
    Faure M,Lin W,Chen Y. 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?Terra Nova, 24(6):456~466.
    Feng Qiao, Zhang Xiaoli, Wang Yunping, Fan Aiping, Liu Yiqun. 2006&. Characteristics of migration and accumulation of hydrocarbon and its deposit-forming signification in upper Paleozoic in north Ordos Basin. Acta Geologica Sinica, 80(5): 748~752.
    Ferrill D A, Smart K J, Necsoiu M. 2008.Displacement—length scaling for single-event fault ruptures: Insights from Newberry Springs Fault Zone and implications for fault zone structure. Geological Society London Special Publications, 299(1): 113~122.
    Gupta A, Scholz C H. 2000. A model of normal fault interaction based on observations and theory. Journal of Structural Geology, 22(7): 865~879.
    Gupta S, Cowie P A, Dawers N H, Underhill J R. 1998. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault—array evolution. Geology, 26(7): 595~598.
    Jackson J, Leeder M. 1994. Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada. Journal of Structural Geology, 16(8): 1041~1059.
    Ji Wenming, Li Weilian, Liu zhen, Lei Ting. 2013&. Research on the upper Paleozoic gas source of the Hangjiqing Block in the northern Ordos Basin. Natural Gas Geoscience, 24(5): 905~914.
    Kim Y S, Andrews J R, Sanderson D J. 2001. Reactivated strike-slip faults: examples from north Cornwall, UK. Tectonophysics, 340(3): 173~194.
    Kim Y S, Sanderson D J. 2005. The relationship between displacement and length of faults: a review. Earth Science Reviews, 68(3): 317~334.
    Lei Kaiyu, Liu Chiyang, Zhang Long, Wu Bolin, Wang Jianqiang, Cun Xiaoni, Sun Li. 2017&. Detrital zircon U-Pb dating of middle—late Mesozoic strata in the northern Ordos Basin: Implications for tracing sediment sources. Acta Geologica Sinica, 91(7): 1552~1541.
    Li Jintao, Li Heng. 2015#. Analysis of shale gas accumulation conditions in Hangjinqi, northern Ordos Basin. Shandong Industrial Technology, (6): 92~93.
    Li Weilian, Ji Wenming, Liu Zhen, Lei Ting, Zhu Jingyu. 2015&. Control of Boerjianghaizi fault on gas accumulation of upper Paleozoic in northern Ordos Basin. Geoscience, 29(3): 584~590.
    Liu Shaofeng, Su San, Zhang Guowei. 2013. Early Mesozoic basin development in North China: Indications of cratonic deformation. Journal of Asian Earth Sciences, 62: 221~236.
    Manighetti I, Campillo M, Sammis C, Mai P M, King G. 2005. Evidence for self-similar, triangular slip distributions on earthquakes: implications for earthquake and fault mechanics. Journal of Geophysical Research: Solid Earth, 110(B5).
    Marrett R, Allmendinger R W. 1991. Estimates of strain due to brittle faulting: sampling of fault populations. Journal of Structural Geology, 13(6): 735~738.
    Nicol A, Walsh J J, Villamor P, Seebeck H, Berryman K R. 2010. Normal fault interactions, paleoearthquakes and growth in an active rift. Journal of Structural Geology, 32(8): 1101~1113.
    Peacock D C P, Sanderson D J. 1991. Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6): 721~733.
    Peacock D C P, Sanderson D J. 1996. Effects of propagation rate on displacement variations along faults. Journal of Structural Geology, 18(2~3): 311~320.
    Ritts B D,Hanson A D,Darby B J,Nanson L,Berry A. 2004. Sedimentary record of Triassic intraplate extension in North China: evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan. Tectonophysics,386(3):177~202.
    Schlische R W,Young S S,Ackermann R V,Gupta A. 1996. Geometry and scaling relations of a population of very small rift-related normal faults. Geology,24(8): 683~686.
    Scholz C H, Dawers N H, Yu J Z, Anders M H, Cowie P A. 1993. Fault growth and fault scaling laws: Preliminary results. Journal of Geophysical Research:Solid Earth, 98(B12): 21951~21961.
    Schultz R A, Soliva R, Fossen H, Okubo C H, Reeves D M. 2008. Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them. Journal of Structural Geology, 30(11): 1405~1411.
    Segall P, Pollard D D. 1980. Mechanics of discontinuous faults. Journal of Geophysical Research: Solid Earth, 85(B8): 4337~4350.
    Sun Xiao, Li Liang, Ding Chao. 2016&. Unconformity structure types and hydrocarbon migration characteristics in Hangjinqi area of Ordos Basin. Oil & Gas Geology, 37(2): 165~172.
    Sun Yipu, Yang Weili, Wang Chuangang, Huang Hongwei, Pu Boling. 2007&. Analysis of accumulation history of upper Paleozoic gas in Hangjinqi area of Ordos Basin. Journal of Oil and Gas Technology, 29(3): 217~219.
    Torabi A, Berg S S. 2011. Scaling of fault attributes: a review. Marine and Petroleum Geology, 28(8):1444~1460.
    Walsh J J, Watterson J. 1987. Distributions of cumulative displacement and seismic slip on a single normal fault surface. Journal of Structural Geology, 9(8): 1039~1046.
    Walsh J J, Watterson J. 1988. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10(3): 239~247.
    Walsh J J, Nicol A, Childs C. 2002. An alternative model for the growth of faults. Journal of Structural Geology, 24(11): 1669~1675.
    Watterson J. 1986. Fault dimensions, displacements and growth. Pure and Applied Geophysics, 124(1): 365~373.
    Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84(4): 974~1002.
    Xie Runcheng, Zhou Wen, Li Liang, Su Yuan, Wang Xin. 2010&. Characteristics of upper Paleozoic sandstone reservoir in Hangjinqi area of Ordos Basin. Xinjiang Geology, 28(1): 86~90.
    Xu Qinghai, Shi Wangzhong, Xie Xiangyang, Arthur B B, Xu Litao, Wu Rui, Liu Kai. 2018. Inversion and propagation of the Late Paleozoic Porjianghaizi fault (North Ordos Basin, China): Controls on sedimentation and gas accumulations. Marine & Petroleum Geology, 91:706~722.
    Xu Shushan, Nieto-Samaniego A F, Alaniz-lvarez S A. 2014. Estimation of average to maximum displacement ratio by using fault displacement—distance profiles. Tectonophysics, 636: 190~200.
    Xu Shushan, Nieto-Samaniego A F, Murillo-Muetón G, Alaniz-lvarez S A, Grajales-Nishimura J M, Velasquillo-Martinez L G. 2016. Effects of physical processes and sampling resolution on fault displacement versus length scaling: the case of the Cantarell complex oilfield, gulf of Mexico. Pure & Applied Geophysics, 173(4): 1125~1142.
    Xue Hui, Zhang Jinchuan, Wang Yi, Xu Bo, Guo Huaqiang. 2009&. Relationship between tectonic evolution and hydrocarbon in Hangjinqi block of north Ordos Basin. Geotectonica et Metallogenia, 33(2): 206~214.
    Yang Minghui, Li Liang, Zhou Jin, Qu Xiaoyan, Zhou Duo. 2013. Segmentation and inversion of the Hangjinqi fault zone, the northern Ordos basin (North China). Journal of Asian Earth Sciences, 70~71: 64~78.
    Yang Minghui, Li Liang, Zhou Jin, Jia Huichong, Sun Xiao, Qu Xiaoyan,Zhou Duo, Gong Ting, Ding Chao. 2015. Mesozoic structural evolution of the Hangjinqi area in the northern Ordos Basin, North China. Marine and Petroleum Geology, 66: 695~710.
    Yao Zhonghui, Zhang Mingshan, Zeng Lingbang, Wang Runsheng, He Tianyi. 2003&. Analysis of the faults in the northern Ordos Basin, northwest China. Petroleum Exploration and Development, 30(2): 20~23.
    Zhang Kaijun. 2012. Destruction of the North China Craton: Lithosphere folding-induced removal of lithospheric mantle? Journal of Geodynamics, 53(53): 8~17.
    Zhang Shaohua, Yang Minghui, Luo Xiaohua. 2015&. Hydrocarbon episodic migration in fault zones: Insights from physical simulation experiments. Geological Review, 61(5): 1183~1191.
    Zhen Xiqiang, Yan Gang. 2006&. Types of hydrocarbon traps in Hangjinqi area of northern Ordos Basin. Progress in Exploration Geophysics, 29(4): 279~284.
    Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011#. Timing, scale and mechanism of the destruction of the North China Craton. Scientia China: Earth Sciences, 54(5): 583–592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700