用户名: 密码: 验证码:
春油菜田抗性生物型野燕麦对高效氟吡甲禾灵的抗性机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resistant Biotype Avena fatua L. in Spring Rape Field:Resistance Mechanisms to Haloxyfop-P-methyl
  • 作者:朱亮 ; 翁华 ; 魏有海
  • 英文作者:Zhu Liang;Weng Hua;Wei Youhai;Qinghai University;Qinghai Academy of Agriculture and Forestry Sciences/Scientific Observing and Experimental Station of Crop Pest in Xining,Ministry of Agriculture/Key Laboratory of Agricultural Integrated Pest Management;
  • 关键词:野燕麦 ; 高效氟吡甲禾灵 ; 抗性机制 ; 乙酰辅酶A羧化酶 ; 细胞色素P450还原酶 ; 谷胱甘肽-S-转移酶
  • 英文关键词:Avena fatua L.;;Haloxyfop-R-methyl;;resistance mechanism;;ACCase;;CYP450 reductase;;GSTs
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:青海大学;青海省农林科学院/农业部西宁作物有害生物科学观测实验站/青海省农业有害生物综合治理重点实验室;
  • 出版日期:2019-03-05
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.514
  • 基金:国家重点研发计划“油菜田生物源除草剂新产品的研发”(2017YFD0201304-4);国家重点研发计划“青海高原生态区春油菜化学农药协同增效技术与产品研发”(2016YFD0200504-05);; 青海省科技厅应用基础项目“青海春油菜田野燕麦对高效氟吡甲禾灵的抗性鉴定与评价”(2016-ZJ-764);; 国家公益性行业(农业)专项“杂草抗药性监测与治理技术研究与示范”(201303031)
  • 语种:中文;
  • 页:ZNTB201907021
  • 页数:6
  • CN:07
  • ISSN:11-1984/S
  • 分类号:134-139
摘要
明确抗性生物型野燕麦对高效氟吡甲禾灵产生抗性的3种酶机制,以期为治理与延缓杂草抗药性提供科学依据。采用温室盆栽法,分别测定了抗性和敏感性生物型野燕麦乙酰辅酶A羧化酶(ACCase)、细胞色素P450(CYP450)还原酶和谷胱甘肽-S-转移酶(GSTs)的活性差异。结果表明,未加药剂时,抗性生物型野燕麦ACCase的活性低于敏感性生物型;随着药剂浓度的增加,2个生物型ACCase的活性逐渐降低,但抗性生物型降低幅度小于敏感生物型,二者ACCase活性IC50分别为78.369μmol/L和43.469μmol/L,活性倍数1.8。清水处理时,野燕麦抗性生物型与敏感生物型CYP450还原酶和GSTs活性差异均不明显;施药后,抗性生物型CYP450还原酶和GSTs的活性均高于敏感生物型,药后12天,抗性生物型与敏感生物型CYP450还原酶活性分别113.1 pmol/L和38.9 pmol/L,活性倍数2.91;2个生物型GSTs活性分别为210.6 mIU/L和319.1 mIU/L,活性倍数1.52。靶标酶活性较高水平的维持及代谢酶活性的增强是野燕麦对高效氟吡甲禾灵产生抗性的重要机制。
        We verified three enzyme mechanisms of resistant biotype Avena fatua L.against Haloxyfop-Pmethyl,in order to provide a basis for controlling and delaying weed resistance.We tested the difference of ACCase,CYP450 reductase and GSTs activities in Haloxyfop-R-methyl resistant and sensitive Avena fatua L.biotypes by potting method in greenhouse.The results showed that:the ACCase activity of resistant biotype Avena fatua L.was lower than that of sensitive biotype when herbicides were not applied;with the increase of Haloxyfop-R-methyl concentration,the activity of 2 biotype ACCase decreased gradually,but the decrease of theresistantbiotypewaslessthanthatofthesensitivebiotype,thetwoACCaseactivityIC50 valuewas78.369μmol/L and 43.469 μmol/L,respectively,and the active multiple was 1.8;there was no significant differences in the activity of CYP450 reductase and GSTs between the resistant biotype and sensitive biotype of Avena fatua L.under water treatment;the activity of the resistant bio-type CYP450 reductase and GSTs was higher than that of the sensitive biotype after the application;after 12 days of application,the content of the resistant biotype and the sensitive biotype CYP450 reductase was 113.1 pmol/L and 38.9 pmol/L,respectively,the activity multiple was 2.91,and the 2 biotypes' GSTs activity was 210.6 mIU/L and 319.1 mIU/L,respectively,and the active multiple was 1.52.The high level of target enzyme activity and the enhancement of metabolic enzyme activity are important mechanisms for the resistance of Avena fatua L.to Haloxyfop-P-methyl.
引文
[1] Graeme C, John C, Stephen M. Managing the risks of herbicideresistance in wild oat[J].Weed Science,2015,49(2):236-240.
    [2]翁华,魏有海,郭良芝,等.青藏高原春油菜田野燕麦对三种除草剂的敏感性研究[J].黑龙江农业科学,2016(11):69-71.
    [3]朱文达,张朝贤,魏守辉,等.野燕麦对油菜生长的影响及其经济阈值[J].中国油料作物学报,2009,31(02):233-238.
    [4]程亮,郭青云,魏有海,等.10.8%高效氟吡甲禾灵乳油防除春油菜田野燕麦药效试验[J].现代农业科技,2008(18):131,135.
    [5]朱海霞,翁华,程亮,等.108 g/L高效氟吡甲禾灵乳油对春油菜田野燕麦的防治效果[J].湖北农业科学,2013,52(14):3297-3298.
    [6]王信群,黄世霞,李楠.油菜田看麦娘对10.8%高效盖草能抗性及对几种除草剂交互抗性的研究[J].安徽农业科学,2006(16):4022-4023.
    [7]陈宏州,杨敬辉,朱桂梅,潘以楼,庄义庆.油菜田日本看麦娘对高效氟吡甲禾灵的抗药性检测[J].西南农业学报,2012,25(02):502-506.
    [8] Moss S R, Perryman S A M, Tatnell L V. Managing Herbicide-resistant Blackgrass(Alopecurus myosuroides):Theory and Practice[J].Weed Technology,2007,21(2):300-309.
    [9]唐鑫,宗涛,刘祥英.湖南省棉田千金子对高效氟吡甲禾灵和草甘膦的抗药性检测[J].中国棉花,2016,43(12):28-29,32.
    [10]吕晓辉,翁华,魏有海,等.青藏高原野燕麦群体对高效氟吡甲禾灵的抗药性检测[J].江西农业大学学报,2016,38(01):106-112.
    [11]吕晓辉,翁华,魏有海,等.青藏高原旱雀麦群体对高效氟吡甲禾灵的抗药性研究[J].湖北农业科学,2016,55(02):368-370.
    [12]李洁,宗涛,刘祥英,等.湖南省部分地区棉田牛筋草(Eleusineindica)对高效氟吡甲禾灵的抗药性[J].棉花学报,2014,26(03):279-282.
    [13] Maneechote C, Preston C, Powles S B. A Diclofop-methyl-Resistant Avena sterilis Biotype with a Herbicide-Resistant Acetyl-coenzyme A Carboxylase and Enhanced Metabolism of Diclofop-methyl[J].Pest Management Science,2015,49(2):105-114.
    [14]郭峰,张朝贤,黄红娟,等.杂草对ACCase抑制剂的抗性[J].杂草科学,2011,29(03):1-6.
    [15]胡利锋,廖晓兰,周小毛,等.细胞色素P450对除草剂代谢作用的研究进展[J].中国农学通报,2011,27(24):238-243.
    [16]吴翠霞,吴小虎,张晓芳,等.细胞色素P450酶系对除草剂代谢作用的研究进展[J].农药研究与应用,2008,12(06):8-12.
    [17]李岗,吴声敢,俞瑞鲜,等.植物谷胱甘肽转硫酶及其与杂草抗药性的关系[J].杂草科学,2012,30(03):1-8.
    [18] Jph R, Milner L J, Cobb A H. A role for glutathione S-transferasesin resistance to herbicides in grasses[J].Weed Science,2004,52(3):468-474.
    [19]翁华,吕晓辉,魏有海,等.春油菜田野燕麦对高效氟吡甲禾灵抗性的生理响应[J].江西农业大学学报,2017,39(04):649-654.
    [20] Holt J S, Radosevich S R. Herbicide resistance in weeds[Biotypes,genetic component][C].California Weed Conference,1982.
    [21]韩庆莉,沈嘉祥.杂草抗药性的形成、作用机理研究进展[J].云南农业大学学报,2004(05):556-561.
    [22]冯程程,马红.除草剂应用现状及挑战[J].江苏农业科学,2014,42(08):111-113.
    [23] Christoffers M J. Genetic aspects of herbicide-resistant weedmanagement[J].Weed Technology,1999,13(3):647-652.
    [24]马红,陈亿兵,陶波.影响抗药性杂草发生的因素[J].东北农业大学学报,2007(02):275-278.
    [25]李健,李美,高兴祥,等.杂草抗药性及其机理研究进展[J].山东农业科学,2016,48(12):165-170.
    [26]黄世霞,王庆亚,董立尧,等.乙酰辅酶A羧化酶抑制剂类除草剂与杂草的抗药性[J].杂草科学,2003(02):2-6.
    [27] Pornprom T, Mahatamnuchoke P, Usui K. The role of altered acetyl-CoA carboxylase in conferring resistance to fenoxaprop-P-ethyl inChinese sprangletop(Leptochloa chinensis,(L.)Nees)[J].PestManagement Science,2006,62(11):1109-15.
    [28] Fischer A J, Bayer D E, Carriere M D, et al. Mechanisms ofResistance to Bispyribac-Sodium in an Echinochloa phyllopogon,Accession[J].Pesticide Biochemistry&Physiology,2000,68(3):156-165.
    [29] Giménez-Espinosa R, Romera E, Tena M, et al. Fate of Atrazine inTreated and Pristine Accessions of Three Setaria Species[J].Pesticide Biochemistry&Physiology,1996,56(3):196-207.
    [30] Mohamed I A, Li R, You Z, et al. Japanese Foxtail(Alopecurusjaponicus)Resistance to Fenoxaprop and Pinoxaden in China[J].Weed Science,2012,60(2):167-171.
    [31] Christoffers M J, Berg M L, Messersmith C G. An isoleucine toleucine mutation in acetyl-CoA carboxylase confers herbicideresistance in wild oat[J].Genome,2002,45(6):1049-1056.
    [32] Délye C, Zhang X Q, Chalopin C, et al. An isoleucine residuewithin the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity toaryloxyphenoxypropionate but not to cyclohexanedione inhibitors[J].Plant Physiology,2003,132(3):1716.
    [33] Yu Q, Collavo A, Zheng M Q, et al. Diversity of acetyl-coenzyme Acarboxylase mutations in resistant Lolium populations:evaluationusing clethodim[J].Plant Physiology,2007,145(2):547-558.
    [34] Powles S B. Molecular Bases for Sensitivity to Acetyl-Coenzyme ACarboxylase Inhibitors in Black-Grass[J].Plant Physiology,2005,137(3):794.
    [35]袁国徽,王恒智,赵宁,等.耿氏硬草对乙酰辅酶A羧化酶类除草剂抗性水平及分子机制初探[J].农药学学报,2016,18(03):304-310.
    [36]朱晓磊,杨光富.乙酰辅酶A羧化酶除草剂的抗性研究进展[J].华中师范大学学报:自然科学版,2009,43(01):76-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700