用户名: 密码: 验证码:
大型油气悬挂缸静、动态性能试验台设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bench Design for Static and Dynamic Characteristics Test of Large Hydro-pneumatic Suspension Cylinders
  • 作者:刘澎 ; 王向周 ; 郑戍华 ; 鲁东原
  • 英文作者:LIU Peng;WANG Xiang-zhou;ZHENG Shu-hua;LU Dong-yuan;School of Automation, Beijing Institute of Technology;
  • 关键词:大型油气悬挂缸 ; 性能试验台 ; 液压泵/马达 ; 能量回收
  • 英文关键词:large hydro-pneumatic suspension cylinder;;characteristic test bench;;hydraulic pump/motor;;energy recover
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:北京理工大学自动化学院;
  • 出版日期:2019-03-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.331
  • 基金:科技部国家科技支撑计划资助项目(2014BAF 08B06)
  • 语种:中文;
  • 页:YYYQ201903015
  • 页数:6
  • CN:03
  • ISSN:11-2059/TH
  • 分类号:77-82
摘要
针对大型油气悬挂缸的静、动态性能试验,提出了一种由伺服电机驱动的定量液压泵/马达控制加载液压缸的节能型试验台设计方案,试验过程中能量的回收与存储采用超级电容。试验台可对被试悬挂缸施加多种激励,且液压主回路无节流。建立了加载系统的数学模型,并利用AMESim软件仿真了性能试验过程。研究结果表明:试验台的性能可以满足多种大型悬挂缸静、动态性能试验的需要,且能实现能量回收,相对于阀控系统能耗降低了约92%;超级电容储能方案避免了电机瞬时大功率运行对电网的冲击,大幅降低了配电系统的建设、改造成本。
        Based on test requirements and analysis of static and dynamic characteristics of large hydro-pneumatic suspension cylinder, a quantitative displacement hydraulic pump/motor driven by servo motor is proposed to directly control a loading cylinder during test. Super-capacitor banks are used for energy recovery and storage during the test. The test rig can apply various excitations to the suspension cylinder under test, and the hydraulic main circuit has no throttling. A mathematical model of test bench is established. And the simulation research is conducted by AMESim. The simulation results show that the bench scheme is feasibility and the bench can carry out various forms of load. Compared with a valve control system, the system energy consumption can be reduced by 92%, because there is no throttle loss in the main hydraulic circuit. Thanks to the super-capacitor energy storage technology, the electric impact of the instantaneous high-power operation of the motor on the power grid is avoided effectively and the construction cost of AC power distribution system is reduced. Consequently, the test bench has a high efficiency and low total cost.
引文
[1] ZHANG J W, CHEN S Z, YANG L. Research on Nonlinear Stiffness Characteristics of Hydro-pneumatic Spring [J]. Applied Mechanics and Materials, 2011,128-129:421-425.
    [2] 郝明金.百吨级阻尼器液压振动试验台及其控制系统的研制[D].杭州:浙江大学,2012. HAO Mingjin. Development of Hydraulic Vibration Test Bench and Control System for one Hundred Ton Damper [D]. Hangzhou: Zhejiang University, 2012.
    [3] ZHANG J, CHEN S, ZHAO Y, et al. Research on Modeling of Hydropneumatic Suspension Based on Fractional Order [J]. Mathematical Problems in Engineering, 2015:1-11.
    [4] 刘二东,郑建明,黄建强,等.直驱泵控电液位置伺服系统模糊PID控制仿真与实验研究[J].液压与气动,2015,(5):67-71. LIU Erdong, ZHENG Jianming, HUANG Jianqiang, et al. Simulation and Experimental Study on Fuzzy PID Control for Direct Drive Pump-controlled Electro-hydraulic Position Servo System [J]. Chinese Hydraulics & Pneumatics, 2015,(5):67-71.
    [5] 左义海.变频调速控制多腔液压缸液压系统节能研究[J].液压与气动,2017,(10):113-117. ZUO Yihai. Energy Saving Research of Hydraulic System Based on Multi-chamber Cylinder with Speed Variable Pump [J]. Chinese Hydraulics & Pneumatics, 2017,(10):113-117.
    [6] 高强,刘小平,袁晓明,等.液压泵(马达)可靠性试验台设计与仿真[J].液压与气动,2017,(2):86-91. GAO Qiang, LIU Xiaoping, YUAN Xiaoming, et al. Design and Simulation of Hydraulic Pump (Motor) Reliability Test Bench [J]. Chinese Hydraulics & Pneumatics, 2017,(2):86-91.
    [7] 刘刚,陈思忠,王文竹,等.基于AMESim和Simulink的油气悬架仿真与试验[J]. 振动测试与诊断,2016,(2):346-350. LIU Gang, CHEN Sizhong, WANG Wenzhu, et al. Simulation and Experimental Research of a Novel Hydro-pneumatic Suspension Based on AMESim and Simulink [J]. Vibration Test and Diagnosis, 2016,(2):346-350.
    [8] 张忠远,王锋.液压节能技术[M].北京:清华大学出版社,2012:101-102. ZHANG Zhongyuan, WANG Feng. Technology of Hydraulic Energy Saving [M]. Beijing: Tsinghua University Press, 2012:101-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700