用户名: 密码: 验证码:
基于杨梅单宁制备三维有序多孔碳内嵌纳米Cu_2O-CuO高性能锂离子电池负极材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bayberry Tannin-enabled Three Dimensional Ordered Porous Carbon Encapsulated Nanoscaled Cu_2O-CuO as High-performance Anode Materials of Li-ion Battery
  • 作者:唐奕 ; 李会芳 ; 王晓玲 ; 黄鑫 ; 廖学品 ; 石碧
  • 英文作者:TANG Yi;LI Huifang;WANG Xiaoling;HUANG Xin;LIAO Xuepin;SHI Bi;National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University;Key Laboratory of Leather Chemistry and Engineering of Ministry of Education,Sichuan University;
  • 关键词:杨梅单宁 ; 三维有序多孔碳 ; 纳米Cu2O-CuO ; 高循环稳定性 ; 锂离子电池负极材料
  • 英文关键词:bayberry tannin;;three dimensional ordered porous carbon;;nanoscaled Cu2O-CuO;;high cycling stability;;anode material of lithium ion battery
  • 中文刊名:PGKG
  • 英文刊名:Leather Science and Engineering
  • 机构:制革清洁技术国家工程实验室(四川大学);皮革化学与工程教育部重点实验室(四川大学);
  • 出版日期:2019-04-12
  • 出版单位:皮革科学与工程
  • 年:2019
  • 期:v.29;No.156
  • 基金:国家自然科学基金(21676171);; 霍英东教育基金会高等院校青年教师基金(61099)
  • 语种:中文;
  • 页:PGKG201902003
  • 页数:8
  • CN:02
  • ISSN:51-1397/TS
  • 分类号:3+8-13+20
摘要
本文以聚苯乙烯球为模板,杨梅单宁/Cu2+混合物为前驱体,制备了三维有序多孔碳内嵌纳米Cu_2O-CuO(3D Cu_2O-CuO@C)锂离子电池负极材料。采用多种技术手段研究了3D Cu_2O-CuO@C结构形貌及其电化学性能。3D Cu_2O-CuO@C在电流密度为1.0 A·g-1的循环性能测试中,500次循环后其放电比容量为635.8 m A·h·g~(-1),表现出了高循环稳定性。在电流密度为8.0 A·g-1的大电流条件下,其放电比容量仍维持在173.4 m A·h·g~(-1),表现出了优异的高倍率性能。
        Three dimensional ordered porous carbon encapsulated nanoscaled Cu_2O-CuO(3 D Cu_2O-CuO@C) was prepared as the anode materials of Li-ion battery by using polystyrene sphere as template and the mixture of bayberry tannin/Cu2+as precursor. The morphology and electrochemical properties of 3 D Cu_2O-CuO@C were fully investigated by various techniques. The 3 D Cu_2O-CuO@C electrode delivered the specific capacity high up to 635.8 mA·h·g~(-1) after500 discharge/charge cycles at the current density of 1.0 A·g-1. At the high current density of 8.0 A·g-1, the specific capacity still reached 173.4 mA·h·g~(-1), exhibiting appreciable high-rate capability.
引文
[1] Shang H, Zuo Z, Li L, et al. Ultrathin Graphdiyne Nanosheets Grown In Situ on Copper Nanowires and Their Performance as Lithium-ion Battery Anodes[J]. Angewandte Chemie International Edition, 2018, 57(3):774-778.
    [2] Li H, Wang Z, Chen L, et al. Research on Advanced Materials for Li-ion Batteries[J]. Advanced Materials, 2009,21(45):4593-4607.
    [3] Jiang J, Li Y, Liu J, et al. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage[J]. Advanced materials, 2012, 24(38):5166-5180.
    [4] Wu S, Fu G, Lv W, et al. A Single-Step Hydrothermal Route to 3D Hierarchical Cu2O/CuO/rGO Nanosheets as High-Performance Anode of Lithium-Ion Batteries[J].Small, 2017, 14(5):1702667.
    [5] Xu C X, Manukyan K V, Adams R A, et al. One-step Solution Combustion Synthesis of CuO/Cu2O/C Anode for Long Cycle Life Li-ion Batteries[J]. Carbon, 2019, 142:51-59.
    [6] Kim A Y, Kim M K, Cho K, et al. One-Step Catalytic Synthesis of CuO/Cu2O in Graphitized Porous Carbon Matrix Derived from the Cu-based Metal-Organic Framework for Li-and Na-Ion Batteries[J]. ACS Applied Materials&Interfaces, 2016, 8(30):19514-19523.
    [7] Ko S, Lee J I, Yang H S, et al. Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-ion Battery Anodes[J]. Advanced Materials, 2012, 24(32):4451-4456.
    [8] Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/Graphene Nanocomposite as a High-performance Anode Material for Lithium-ion Batteries[J]. Journal of Materials Chemistry, 2010, 20(47):10661-10664.
    [9] Amin R, Maier J, Balaya P, et al. Ionic and Electronic Transport in Single Crystalline Li Fe PO4Grown by Optical Floating Zone Technique[J]. Solid State Ionics, 2008, 179(27):1683-1687.
    [10] Lytle J C, Yan H, Ergang N S, et al. Structural and Electrochemical Properties of Three-dimensionally Ordered Macroporous Tin Oxide Films[J]. Journal of Materials Chemistry, 2004, 14(10):1616-1622.
    [11] Arthur T S, Bates D J, Nicolas C, et al. Three-dimensional Electrodes and Battery Architectures[J]. MRS Bulletin,2011, 36(7):523-531.
    [12] Huang X, Chen J, Lu Z, et al. Carbon Inverse Opal Entrapped with Electrode Active Nanoparticles as High-performance Anode for Lithium-ion Batteries[J]. Scientific Reports, 2013, 3:2317.
    [13] Sakamoto J S, Dunn B. Hierarchical Battery Electrodes Based on Inverted Opal Structures[J]. Journal of Materials Chemistry, 2002, 12:2859-2861.
    [14] Ergang N S, Lytle J C, Yan, H W, et al. Effect of a Macropore Structure on Cycling Rates of Li Co O2[J]. Journal of The Electrochemical Society, 2005, 152(10):1989-1995.
    [15] Tonti D, Torralvo M J, Enciso E, et al. Three-Dimensionally Ordered Macroporous Lithium Manganese Oxide for Rechargeable Lithium Batteries[J]. Chemistry of Materials,2008, 20(14):4783-4790.
    [16] Ejima H, Richardson J J, Liang K, et al. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering[J]. Science, 2013, 341(6142):154-157.
    [17] Guo J, Ping Y, Ejima H, et al. Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks[J]. Angewandte Chemie, 2014, 126(22):5652-5657.
    [18] Yang S J, Antonietti M, Fechler N. Self-Assembly of Metal Phenolic Mesocrystals and Morphosynthetic Transformation toward Hirarchically Porous Carbons[J]. Journal of the American Chemical Society, 2015, 137(25):8269-8273.
    [19] Qi G, Wang Y, Estevez L, et al. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell[J]. Chemistry of Materials, 2010, 22(9):2693-2695.
    [20] Meng H, Yang W, Ding K, et al. Cu2O Nanorods Modified by Reduced Graphene Oxide for NH3 Sensing at Room Temperature[J]. J Mater Chem A, 2015,3, 1174-1181.
    [21] Katsifaras A, Spanos N. Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite[J]. Journal of Crystal Growth, 1999, 204(1–2):183-190.
    [22] Debart A, Dupont L, Poizot P, el al. A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-made CuO Particles Toward Lithium[J]. Journal of The Electrochemical Society, 2001, 148(11):1266-1274.
    [23] Choi S H, Ko Y N, Jung K Y, et al. Macroporous Fe3O4/Carbon Composite Microspheres with a Short Li+Diffusion Pathway for the Fast Charge/Discharge of Lithium Ion Batteries[J]. Chemistry A European Journal, 2015, 20(35):11078-11083.
    [24] Liu D, Yang Z, Wang P, et al. Preparation of 3D Nanoporous Copper-supported Cuprous Oxide for High-performance Lithium Ion Battery Anodes[J].Nanoscale, 2013, 5(5):1917-1921.
    [25] Chen K, Xue D. A Chemical Reaction Controlled Mechanochemical Route to Construction of CuO Nanoribbons for High Performance Lithium-ion Batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(45):19708-19714.
    [26] Zhang D W, Chen C H, Zhang J, et al. Novel Electrochemical Milling Method To Fabricate Copper Nanoparticles and Nanofibers[J]. Chemistry of Materials, 2005, 17(21):5242-5245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700