用户名: 密码: 验证码:
细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties
  • 作者:孙海燕 ; 苏明垒 ; 吕建雄 ; 赵荣军 ; 任海青 ; 王玉荣
  • 英文作者:SUN Haiyan;SU Minglei;Lü Jianxiong;ZHAO Rongjun;REN Haiqing;WANG Yurong;Research Institute of Forestry New Technology,Chinese Academy of Forestry;Research Institute of Wood Industry,Chinese Academy of Forestry;
  • 关键词:木材 ; 微纤丝角 ; 结晶区 ; 物理性质 ; 力学性质
  • 英文关键词:wood;;microfibril angle;;crystalline area;;physical property;;mechanical property
  • 中文刊名:XBNY
  • 英文刊名:Journal of Northwest A & F University(Natural Science Edition)
  • 机构:中国林业科学研究院林业新技术研究所;中国林业科学研究院木材工业研究所;
  • 出版日期:2018-11-06 16:58
  • 出版单位:西北农林科技大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.344
  • 基金:国家重点研发计划项目(2017YFD0600201);; 中央级公益性科研院所基金项目(CAFYBB2018GD001)
  • 语种:中文;
  • 页:XBNY201905008
  • 页数:9
  • CN:05
  • ISSN:61-1390/S
  • 分类号:56-64
摘要
木材是由不同种类的细胞组成的天然材料,其实体物质是组成其结构的各类型细胞的细胞壁。细胞壁的超微构造主要包括微纤丝和结晶区,微纤丝角能表征纤维素微纤丝的取向,纤维素大分子链排列的有序程度及排列形态决定其结晶程度和微晶形态等结晶区特征。基于前人的研究,系统概述了细胞壁微纤丝和结晶区对木材物理力学性能影响的研究进展,重点围绕微纤丝角和结晶度2个方面,分别归纳了二者对木材密度、尺寸稳定性、木材声学等物理性质以及弹性模量、强度等力学性质的影响作用,同时阐述了微纤丝角与木材硬度和刚度以及结晶度与冲击韧性等的相互关系,并概述了细胞壁微晶形态对木材润湿性和纤维强度影响方面的研究进展,最后对今后的研究方向进行了展望。
        Wood is one kind of natural materials consisting of various type of cells.Physical substance of wood is cell walls that form its structure.Ultrastructure of wood cell walls includes microfibril and crystalline area.Microfibril angle can characterize the orientation of cellulose microfibrils, while crystallinity and microcrystalline morphology are determined by the order and arrangement of cellulose macromolecular chains.Based on previous researches,this study systematically summarizes the effect of microfibril angle and crystalline area on basic material properties of woods.The effects of microfibril angle and crystallinity on physical and mechanical properties,such as dimensional stability and density,elastic modulus and strength are elaborated.The relationships between microfibril angle and hardness and stiffness as well as between crystallinity and impact toughness of wood are discussed,and the influence of microcrystalline morphology on wettability and fiber strength of woods is introduced.Finally,the perspectives for future study are also included.
引文
[1] 刘一星,赵广杰.木质资源材料科学 [M].北京:中国林业出版社,2004:59,61. Liu Y X,Zhao G J.Wood resource science [M].Beijing:China Forestry Press,2004:59,61.
    [2] Abraham Y,Elbaum R.Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy [J].New Phytologist,2013,197(4):1012-1019.
    [3] 陈存,丁昌俊,苏晓华,等.欧美杨纤维含量构成因素的相关和通径分析 [J].林业科学,2016,52(11):124-133. Chen C,Ding C J,Su X H,et al.Correlation and path analysis of the components of fiber content for Populus×Euramericana [J].Scientia Silvae Sinicae,2016,52(11):124-133.
    [4] Toba K,Yamamoto H,Yoshida M.Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment,using X-ray diffraction technique [J].Cellulose,2013,20(2):633-643.
    [5] 范文俊,涂登云,彭冲,等.热处理对毛白杨木材力学性能的影响机理 [J].东北林业大学学报,2015,43(10):88-91. Fan W J,Tu D Y,Peng C,et al.Influence of heat treatment on mechanical properties of Populus tomentosa wood [J].Journal of Northeast Forestry University,2015,43(10):88-91.
    [6] Eodo K,Obataya E,Zeniya N,et al.Effects of heating humidity on the physical properties of hydrothermally treated spruce wood [J].Wood Science and Technology,2016,50(6):1161-1179.
    [7] 林金国.福建中亚热带人工阔叶林材质变异规律及预测研究 [M].北京:化学工业出版社,2008:4. Lin J G.Study on the variation and prediction of the material quality of the artificial broad leaved forest in the mid subtropical zone of Fujian [M].Beijing:Chemical Industry Press,2008:4.
    [8] 邱肇荣,刘君良,张士诚.长白落叶松木材管胞微纤丝角的变异规律 [J].吉林林学院学报,1996,12(3):152-155. Qiu Z R,Liu J L,Zhang S C.Study on the variation in wood tracheid microfiber angles of Changbai Larch [J].Journal of Jilin Forestry University,1996,12(3):152-155.
    [9] Ma T,Inagaki T,Tsuchikawa S.Calibration of SilviScan data of cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution [J].Holzforschung,2017,71(4):341-347.
    [10] 刘亚梅,刘盛全.人工授力欧美杨107杨不同倾斜角度苗木的微纤丝角、基本密度和轴向干缩率 [J].林业科学,2011,47(8):115-120. Liu Y M,Liu S Q.Microfibril angle, basic density and longitudinal shrinkage of different inclined angles in artificial leaned saplings of Poplar ‘I-107' (Populus×euramericana ‘Neva') [J].Scientia Silvae Sinicae,2011,47(8):115-120.
    [11] 何正斌,赵紫剑,伊松林.木材干燥热质传递理论与树枝分析 [M].北京: 中国林业出版社,2013:54. He Z B,Zhao Z J,Yi S L.Heat and mass transfer theory and tree branch analysis of wood drying [M].Beijing:China Forestry Publishing House,2013:54.
    [12] 李坚.木材科学 [M].北京:科学出版社,2014:96,168. Li J.Wood science [M].Beijing:Academic Publishing House,2014:96,168.
    [13] Leonardon M,Altaner C M,Vihermaa L,et al.Wood shrinkage:influence of anatomy,cell wall architecture,chemical composition and cambial age [J].European Journal of Wood and Wood Products,2010,68(1):87-94.
    [14] 郑拓宇.木材干缩影响因素及减少干燥开裂的方法 [J].林业机械与木工设备,2014,42(3):30-32,35. Zheng T Y.Factors influencing timber dry shrinkage and methods for reducing timber desiccation cracks [J].Forestry Machinery and Woodworking Equipment,2014,42(3):30-32,35.
    [15] Obataya E,On O T,Norimoto M.Vibrational properties of wood along the grain [J].Journal of Materials Science,2000,35:2993-3001.
    [16] 雷福娟,黄腾华,陈桂丹.音板声学品质的主要影响因子及其评测方法 [J].陕西林业科技,2017(5):85-89,94. Lei F J,Huang T H,Chen G D.The main factors affecting acoustic quality of soundboard and the methods to evaluate the acoustic quality of soundboard [J].Shaanxi Forest Science and Technology,2017(5):85-89,94.
    [17] Chen Z Q,Karlsson B,Lundqvist S O,et al.Estimating solid wood properties using pilodyn and acoustic velocity on standing trees of Norway spruce [J].Annals of Forest Science,2015,72(4):499-508.
    [18] Sharma M,Apiolaza L A,Chauhan S,et al.Ranking very young Pinus radiata families for acoustic stiffness and validation by microfibril angle [J].Annals of Forest Science,2016,73(2):393-400.
    [19] Lenz P,Auty D,Achim A,et al.Genetic improvement of white spruce mechanical wood traits-early screening by means of acoustic velocity [J].Forests,2013,4(3):575-594.
    [20] Mason E G,Hayes M,Pink N.Validation of ultrasonic velocity estimates of wood properties in discs of radiata pine [J].New Zealand Journal of Forestry Science,2017,47(1):16-20.
    [21] 秦特夫,黄洛华.5种不同品系相思木材的化学性质:Ⅰ.木材化学组成及差异性 [J].林业科学研究,2005,18(2):191-194. Qin T F,Huang L H.Study on the difference of chemical properties among five Acacia species woods:Ⅰ.Study on the difference of chemical composition [J].Forest Research,2005,18(2):191-194.
    [22] 杨忠,赵荣军,费本华,等.木材结晶度与树木年轮的生长特征、化学组成的相关性 [J].北京林业大学学报,2010,32(4):223-226. Yang Z,Zhao R J,Fei B H,et al.Correlation of wood crystallinity with chemical composition and annual ring characteristics of slash pine trees [J].Journal of Beijing Forestry University,2010,32(4):223-226.
    [23] Deng B,Shang X L,Fang S Z,et al.Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus [J].Journal of Agricultural and Food Chemistry,2012,60(25):6286-6292.
    [24] 邓波,杨万霞,方升佐,等.青钱柳幼龄期生长与木材性状表现及其性状相关分析 [J].南京林业大学学报(自然科学版),2014,38(5):113-117. Deng B,Yang W X,Fang S Z,et al.Growth and wood properties of juvenile Cyclocarya paliurus,and their correlation analysis [J].Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(5):113-117.
    [25] 宁国艳,王喜明,王哲.不同状态胡杨木材物理性质变化研究 [J].西北林学院学报,2017,32(4):224-228. Ning G Y,Wang X M,Wang Z.Study on the changes of wood physical properties in different States of Populus euphratica [J].Journal of Northwest Forestry University,2017,32(4):224-228.
    [26] 杨淑敏,江泽慧,任海清,等.利用X射线法测定竹材纤维素结晶度 [J].东北林业大学报,2010,38(8):75-77. Yang S M,Jiang Z H,Ren H Q,et al.Determination of cellulose crystallinity of bamboo culms with X-ray diffraction spectrum [J].Journal of Northeast Forestry University,2010,38(8):75-77.
    [27] Umesh P,Agarwal,Sally A,et al.Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size [J].Cellulose,2017,24:1971-1984.
    [28] 张求慧,钱桦.家具材料学 [M].北京:中国林业出版社,2013:54. Zhang Q H,Qian H.Furniture materials science [M].Beijing:China Forestry Publishing House,2013:54.
    [29] 石江涛,丁笑红,张勰,等.天然次生林杉木枝材与干材材性比较 [J].林业工程学报,2017,2(1):20-24. Shi J T,Ding X J,Zhang X,et al.Comparison of characteristics of branch and truck of Cunninghamia lanceolata from natural secondary forest [J].Journal of Forestry Engineering,2017,2(1):20-24.
    [30] Seppo A,Yurong W,Raili P,et al.Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.) [J].Journal of Integrative Plant Biology,2015,57(4):388-395.
    [31] 尹江苹,郭娟,赵广杰,等.湿热-压缩处理木材的纤维素晶体结构变化 [J].林产工业,2017,44(7):10-14. Yin J P,Guo J,Zhao G J,et al.Cellulose crystalline structure changes of the wood treated by compression combined with steam [J].China Forest Products Industry,2017,44(7):10-14.
    [32] Driemeier C,Bragatto J.Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants [J].Journal of Physical Chemistry,2013,117(1):415-421.
    [33] 赵美霞,康柳,储德淼,等.超声/高温热处理对古琴面板声学性能的影响 [J].木材加工机械,2016,27(4):45-50. Zhao M X,Kang L,Chu D M,et al.Impact of ultrasonic/high temperature heat treatment on acoustics performance of Chinese zither instruments plates [J].Wood Processing Machinery,2016,29(4):45-50.
    [34] 刘一星,沈隽,刘镇波,等.结晶度对云杉属木材声振动特性参数的影响 [J].东北林业大学学报,2001,29(2):4-6. Liu Y X,Shen J,Liu Z B,et al.The effect of crystallinity index on vibration properties of Picea wood [J].Journal of Northeast Forestry University,2001,29(2):4-6.
    [35] 马丽娜.木材构造与声振性质的关系的研究 [D].合肥:安徽农业大学,2005. Ma L N.Study on relationships between wood structures and acoustic vibration properties [D].Hefei: Agricultural University of Anhui,2005.
    [36] Zhu L J,Liu Y X,Liu Z B.Effect of high-temperature heat treatment on the acoustic-vibration performance of Picea jezoensis [J].Bioresources,2016,11(2):4927-4934.
    [37] Cowdrey D R,Preston R D.Elasticity and microfibrillar angle in the wood of Sika spruce [J].Proceedings of the Royal Society B:Biological Sciences,1996,166(1004):245-272.
    [38] 田根林,王汉坤,余雁,等.微纤丝取向对木材细胞壁力学性能的影响研究 [J].纳米科技,2010,7(2):63-66. Tian G L,Wang H K,Yu Y,et al.Study the effect of MTA to the elastic modulus and hardness of wood cell wall [J].Nanoscience and Nanotechnology,2010,7(2):63-66.
    [39] Xing D,Li J,Wang X Z,et al.In situ measurement of heat-treated wood cell wall at elevated temperature by nanoindentation [J].Industrial Crops and Products,2016,87:142-149.
    [40] Wimmer R,Lucas B N,Tsui T Y,et al.Longitudinal hardness and young's modulus of spruce tracheid secondary walls using nanoindentation technique [J].Wood Science and Technology,1997,31(2):131-141.
    [41] 余雁,费本华,张波,等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度 [J].北京林业大学学报,2006,28(5):114-118. Yu Y,Fei B H,Zhang B,et al.Longitudinal MOE and hardness of different cell wall layers of softwood tracheid [J].Journal of Beijing Forestry University,2006,28 (5):114-118.
    [42] Ammann S,Obersriebnig M,Konnerth J,et al.Comparative adhesion analysis at glue joints in European beech and Norway spruce wood by means of nanoindentation [J].International Journal of Adhesion and Adhesives,2014,50:45-49.
    [43] 周兆兵,徐朝阳,张洋,等.响叶杨细胞壁尺寸参数及其纳米压痕特性 [J].林业科学,2010,46(11):138-143. Zhou Z B,Xu C Y,Zhang Y,et al.Dimension parameters and nanoindentation of Populus adenopoda wood cell [J].Scientia Silvae Sinicae,2010,46(11):138-143.
    [44] Wang Y R,Liu C W,Zhao R J,et al.Anatomical characteristics, microfibril angle and micromechanical properties of cottonwood (Populus deltoides) and its hybrids [J].Biomass and Bioenergy,2016,93:72-77.
    [45] Treacy M,Dhubhain A,Evertsen J.The influence of microfibril angle on wood quality in four provenances of Irish grown Sitka spruce [J].Journal of the Institute of Wood Science,2000,15(4):211-220.
    [46] Yang J L,Evans R.Prediction of MOE of eucalypt wood from microfibril angle and density [J].Holzals Rohund Werkstoff,2003,61:449-452.
    [47] Barrios A,Trincado G,Watt M,et al.Wood properties of juvenile and mature wood of Pinus radiata D.Don trees growing on contrasting sites in Chile [J].Forest Science,2017,63(2):184-191.
    [48] Sun C,Lai M,Zhang S,et al.Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection [J].Frontiers of Agricultural Science and Engineering,2017,4(4):482-492.
    [49] 吴燕,周定国,王思群,等.木材微纤丝角和密度与弹性模量的关系 [J].南京林业大学学报(自然科学版),2009,33(4):113-116. Wu Y,Zhou D G,Wang S Q,et al.Relationship of wood MFA and density with elastic modulus [J].Journal of Nanjing Forestry University (Natural Sciences Edition),2009,33(4):113-116.
    [50] Jun T,Futoshi I,Akira T,et al.Radial and between-family variations of the microfibril angle and the relationships with bending properties in Picea jezoensis families [J].Scandinavian Journal of Forest Research,2017,32(1):39-44.
    [51] 江泽慧,余雁,费本华,等.纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度 [J].林业科学,2004,40(2):113-118. Jiang Z H,Yu Y,Fei B H,et al.Using nanoindentation technique to determine the longitudinal elastic modulus and hardness of tracheids secondary wall [J].Scientia Silvae Sinicae,2004,40(2):113-118.
    [52] 邵亚丽,安珍,邢新婷,等.落叶松木材力学性质及应用研究进展 [J].木工加工机械,2011,22(3):46-50. Shao Y L,An Z,Xing X T,et al.Advance on mechanical properties and application of Larix [J].Wood Processing Machinery,2011,22(3):46-50.
    [53] Arthur G,Arie L,Bruno C,et al.Contribution of cellulose to the moisture-dependent elastic behaviour of wood [J].Composites Science and Technology,2017,138:151-160.
    [54] Hlavata V,Kuklik P,Celler J,et al.Microfiber angle and its effect on wood cell behavior [J].Advanced Materials Research,2017,1144:88-93.
    [55] Wu Y,Wang S,Zhou D,et al.Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species [J].Wood and Fiber Science,2009,41(1):64-73.
    [56] 蒋坤云,陈丽华,杨苑君,等.华北油松、落叶松根系抗拉强度与其微观结构的相关性研究 [J].水土保持学报,2013,27(2):8-12,19. Jiang K Y,Chen L H,Yang Y J,et al.Relationship between tensile strength and selected anatomical features of two different conifer species' roots in north China [J].Journal of Soil and Water Conservation,2013,27(2):8-12, 19.
    [57] 徐有明.油松木材管胞纤丝角的变异及其与解剖、抗拉强度和抗弯强度的关系 [J].安徽农学院学报,1989,16(2):141-151. Xu Y M.Variation in microfiberillar angle of tracheid in Piuns tabulaeformis and its correlations to structure, tensile and bending strength [J].Journal of Anhui Agricultural University,1989,16(2):141-151.
    [58] 金春德,张美淑,文桂峰,等.人工林赤松幼龄材与成熟材力学性质的比较 [J].浙江林学院学报,2006,23(5):477-481. Jin C D,Zhang M S,Wen G F,et al.Mechanical properties of juvenile and mature wood of Pinus densiflora from plantations [J].Journal of Zhejiang Forestry College,2006,23(5):477-481.
    [59] 张淑琴,余雁,费本华,等.杉木木材管胞纵向弹性模量的研究 [J].北京林业大学学报,2012,34(6):126-130. Zhang S Q,Yu Y,Fei B H,et al.Longitudinal modulus of elasticity of Chinese fir tracheid [J].Journal of Beijing Forestry University,2012,34(6):126-130.
    [60] Page D H,Hosseing F,Winkler K,et al.Elastic modulus of single wood pulp fibers [J].Tappi,1977,60(4):114-117.
    [61] 李新宇,张明辉.利用X射线衍射法探究木材含水率与结晶度的关系 [J].东北林业大学学报,2014,42(2):96-99. Li X Y,Zhang M H.Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction [J].Journal of Northeast Forestry University,2014,42(2):96-99.
    [62] 李安鑫,吕建雄,蒋佳荔.木材细胞壁结构及其流变特性研究进展 [J].林业科学,2017,53(12):136-143. Li A X,Lü J X,Jiang J L.A review of wood cell wall structure and its rheological property [J].Scientia Silvae Sinicae,2017,53(12):136-143.
    [63] 彭辉,蒋佳荔,詹天翼,等.木材普通蠕变和机械吸湿蠕变研究概述 [J].林业科学,2016,52(4):117-126. Peng H,Jiang J L,Zhan T Y,et al.A review of pure viscoelastic creep and mechano-sorptive creep of wood [J].Scientia Silvae Sinicae,2016,52(4):117-126.
    [64] Pan Y H,Zhong Z.Analysis of creep and modulus loss of the wood cell wall [J].Acta Mechanic,2016,227(11):3191-3203.
    [65] Roszyk E,Mania P,Molinski W.The influence of microfibril angle on creep of Scotch pine wood under tensile stress along the grains [J].Wood Research,2012,57(3):347-358.
    [66] Engelund E T,Svensson S.Modelling time-dependent mechanical behaviour of softwood using deformation kinetics [J].Holzforschung,2011,65(2):231-237.
    [67] Roszyk E,Kwiatkowski T,Moliński W.Mechanical parameters of pine wood in individual annual rings under tensile stress along the grains in dry and wet state [J].Wood Research,2013,58(4):571-580.
    [68] Engelund E T,Salmén L.Tensile creep and recovery of Norway spruce influenced by temperature and moisture [J].Holzforschung,2012,66(8):959-965.
    [69] 陈美玲,张双燕,王传贵.密粘褶菌生物性降解对杉木木材性质的影响 [J].安徽农业大学学报,2016,43(3):378-382. Chen M L,Zhang S Y,Wang C G.Wood properties of Chinese-fir after biological degradation by gloeophyllum trabeum (Pers.) murrill [J].Journal of Anhui Agricultural University,2016,43(3):378-382.
    [70] Wang X Z,Deng Y H,Wang S Q,et al.Evaluation of the effects of compression combined with heat treatment by nanoindentation (NI) of poplar cell walls [J].Holzforschung,2014,68(2):167-173.
    [71] Borrega M,Ahvenainen P,Serimaa R,et al.Composition and structure of balsa (Ochroma pyramidale) wood [J].Wood Science and Technology,2014,49(2):403-420.
    [72] Ding T,Gu L,Li T.Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber [J].European Journal of Wood Products,2011,69(1):121-126.
    [73] Zhao L Y,Jiang J H,Lu J X.Effect of thermal expansion at low temperature on mechanical properties of birch wood [J].Cold Regions Science and Technology,2016,126:61-65.
    [74] 林剑,赵广杰,孟令萱.利用X射线衍射技术与红外光谱分析真菌侵蚀的木材 [J].光谱学与光谱分析,2010,30(6):1674-1678. Lin J,Zhao G J,Meng L X.Analysis of decayed wood by fungi with X-ray diffractometry and fourier transform infrared spectroscopy [J].Spectroscopy and Spectral Analysis,2010,30(6):1674-1678.
    [75] 沈新元.化学纤维手册 [M].北京:中国纺织出版社,2008:45. Shen X Y.Handbook of chemical fibers [M].Beijing:China Textile Press,2008:45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700