用户名: 密码: 验证码:
Ag掺杂Cu_2SnSe_3致相反热电性能及其复合提升
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Different Doping Sites of Ag on Cu_2SnSe_3 and Their Thermoelectric Property
  • 作者:周一鸣 ; 周玉玲 ; 庞前涛 ; 邵建伟 ; 赵立东
  • 英文作者:ZHOU Yi-Ming;ZHOU Yu-Ling;PANG Qian-Tao;SHAO Jian-Wei;ZHAO Li-Dong;School of Materials Science and Engineering, Beihang University;AVIC SAC Commercial Aircraft Company Ltd.;Liaoning Tieling Sales Branch, Petro China Co.Ltd.;Shenyang Liming Areo-Engine Co.Ltd.;
  • 关键词:热电 ; 有效介质理论 ; 类金刚石结构 ; Cu2SnSe
  • 英文关键词:thermoelectric;;effective medium theory;;diamond-like;;Cu2SnSe3
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:北京航空航天大学材料科学与工程学院;中航沈飞民用飞机有限责任公司;中国石油天然气股份有限公司辽宁铁岭销售分公司;中国航发沈阳黎明航发发动机有限责任公司;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:国家重点研发计划(2018YFB0703600);; 国家自然科学基金(51571007,51772012);; 北京市科学技术委员会(Z171100002017002);; 深圳市孔雀计划(KQTD2016022619565911);; 111计划(B17002)~~
  • 语种:中文;
  • 页:WGCL201903008
  • 页数:9
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:71-79
摘要
热电材料可有效回收废热并将其转化为电能,然而转换效率受复杂耦合热电参数的限制。高效热电材料需要具有优异的电传输和良好的隔热性能。具有类金刚石结构的Cu2SnSe3是一种潜在的中温区热电材料,本研究通过在Sn位和Cu引入Ag离子,分别获得了高电传输相Cu2Sn0.93Ag0.07Se3和低热传输相Cu1.91Ag0.09SnSe3,然后通过机械混合和烧结制备了Cu2Sn0.93Ag0.07Se3和Cu1.91Ag0.09SnSe3两相复合的材料。利用两相材料的晶体结构相同和晶格常数匹配的特点,在高温段有效地协同调控了Cu2SnSe3材料的电输运和热输运性能,从而使材料的高温热电性能得到优化,用有效介质理论很好地描述了高性能的两相复合材料的电和热传输行为。
        Thermoelectric materials enable the direct inter-conversion between electrical energy and thermal energy.However, the conversion efficiency is limited by complex interdependent thermoelectric parameters, while the high performance thermoelectrics should simultaneously possess excellent electrical transport properties and poor thermal conductivities. The diamond-like compound Cu2 SnSe3 is a promising middle-temperature thermoelectric material. In this work, the phase(Cu2 Sn0.93 Ag0.07 Se3) with excellent electrical transport properties and the phase(Cu1.91 Ag0.09 SnSe3)with poor thermal conductivities were obtained just through Ag doping on the Sn and Cu sites, respectively. Meanwhile, their Seebeck coefficients were also quite different. To combine their advantages, the composites of Cu2 Sn0.93 Ag0.07 Se3 and Cu1.91 Ag0.09 SnSe3 were fabricated through mechanical mixing and sintering. Benefited from the same crystal structure and the similar lattice parameters for these two phases, the small-mismatch phase interface is supposed to scatter phonons with little influence to the electrons, especially at high temperature. Therefore, the thermoelectric performance is improved due to the synergistically optimized electrical and thermal transport properties,which are well supported by the effective media theory for the composite.
引文
[1]TANG,ZHAOLD,KANATZIDISMG.Rationallydesigning high-performance bulk thermoelectric materials. Chemical Reviews,2016, 116(19):12123–12149.
    [2]COHN J L, NOLAS G S, FESSATIDIS V, et al. Glass-like heat conductioninhigh-mobilitycrystallinesemiconductors.Physical Review Letters, 1999, 82(4):779–782.
    [3]PEIY,SHIX,LALONDEA,etal.Convergenceofelectronic bandsforhighperformancebulkthermoelectrics.Nature,2011,473(7345):66–69.
    [4]ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671):247–251.
    [5]TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and highthermoelectricperformanceinSnTeheavilyalloyedwith MnTe. Journal of the American Chemical Society, 2015, 137(35):11507–11516.
    [6]BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012,489(7416):414–418.
    [7]XIAO Y, WU H J, LI W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te.Journal of the American Chemical Society, 2017, 139(51):18732–18738.
    [8]WU C F, WEI T R, SUN F H, et al. Nanoporous PbSe-SiO2 thermoelectric composites. Advanced Science, 2017, 4(11):1700199–1–7.
    [9]SU X, WEI P, LI H, et al. Multi-scale microstructural thermoelectric materials:transport behavior, non-equilibrium preparation, and applications. Advanced Materials, 2017, 29(20):1602013–1–13.
    [10]ZHAO L D, LO S H, HE J, et al. High performance thermoelectricsfromearth-abundantmaterials:enhancedfigureofmeritin PbSbysecondphasenanostructures.JournaloftheAmerican Chemical Society, 2011, 133(50):20476–20487.
    [11]ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496):373–377.
    [12]ZHAO L D, TAN G J, HAO S Q, et al. Ultrahigh power factor and thermoelectricperformanceinhole-dopedsingle-crystalSnSe.Science, 2016, 351(6269):141–144.
    [13]CHANG C, WU M H, HE D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals.Science, 2018, 360(6390):778–782.
    [14]SHI X, XI L, FAN J, et al. Cu-Se bond network and thermoelectric compoundswithcomplexdiamondlikestructure.Chemistryof Materials, 2010, 22(22):6029–6031.
    [15]FANJ,CARRILLO-CABRERAW,AKSELRUDL,etal.New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties. Inorganic Chemistry, 2013, 52(19):11067–11074.
    [16]PRASAD K S, RAO A, TYAGI K, et al. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B-Condensed Matter, 2017, 512(1):39–44.
    [17]LIY,LIUG,LIJ,etal.Highthermoelectricperformanceof In-dopedCu2SnSe3preparedbyfastcombustionsynthesis.New Journal of Chemistry, 2016, 40(6):5394–5400.
    [18]LUX,MORELLIDT.ThermoelectricpropertiesofMn-doped Cu2Sn Se3. Journal of Electronic Materials, 2012, 41(6):1554–1558.
    [19]LI Y, LIU G, CAO T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by(Ag,In)-Co-doping. Advanced Functional Materials,2016, 26(33):6025–6032.
    [20]DELGADO G, MORA A, MARCANO G, et al. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin, 2003, 38(15):1949–1955.
    [21]FANJ,SCHNELLEW,ANTONYSHYNI,etal.Structural evolvementandthermoelectricpropertiesofCu3–xSnxSe3compounds with diamond-like crystal structures. Dalton Transactions,2014, 43(44):16788–16794.
    [22]PENG K, LU X, ZHAN H, et al.Broad temperature plateau for high ZTS in heavily doped p-type SnSe single crystals. Energy&Environmental Science, 2016, 9(2):454–460.
    [23]NANCW.Physicsofinhomogeneousinorganicmaterials.Progress in Materials Science, 1993, 37(1):1–116.
    [24]ZHANGB,SUNJ,KATZHE,etal.Promisingthermoelectric propertiesofcommercialPEDOT:PSSmaterialsandtheirBi2Te3powdercomposites.ACSAppliedMaterials&Interfaces,2010,2(11):3170–3178.
    [25]ZHOUYM,WUHJ,PEIYL,etal.Strategytooptimizethe overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. Acta Materialia, 2017, 125:542–549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700