用户名: 密码: 验证码:
海底管道主动伴热维温技术应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and research progress of the active heat tracing and insulation technology of subsea pipeline
  • 作者:万宇飞 ; 刘春雨 ; 钱欣 ; 李立婉 ; 唐宁依 ; 王文光 ; 郝铭
  • 英文作者:WAN Yufei;LIU Chunyu;QIAN Xin;LI Liwan;TANG Ningyi;WANG Wenguang;HAO Ming;Tianjin Branch Company, China National Offshore Oil Co.Ltd.;Tianjin Design Institute, China Petroleum Pipeline Engineering Corporation;
  • 关键词:海底管道 ; 主动伴热 ; 维温 ; 集肤效应 ; 应用 ; 进展
  • 英文关键词:subsea pipeline;;active heat tracing;;insulation;;skin effect;;application;;progress
  • 中文刊名:YQCY
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:中海石油(中国)有限公司天津分公司;中国石油天然气管道工程有限公司天津设计院;
  • 出版日期:2018-12-13 17:24
  • 出版单位:油气储运
  • 年:2019
  • 期:v.38;No.363
  • 基金:国家科技重大专项“渤海油田高效开发示范工程”,2016ZX05058004-003
  • 语种:中文;
  • 页:YQCY201903004
  • 页数:8
  • CN:03
  • ISSN:13-1093/TE
  • 分类号:32-39
摘要
海底管道主动伴热维温技术作为被动保温方式的补充,拟在中国海上高黏、易凝原油,深水油气开发中进行应用,中国在自主应用海底管道主动伴热维温技术方面尚处空白,需要在充分比较的基础上,吸收国内外应用案例的先进做法。通过调研分析认为:海底管道主动伴热维温技术可以适应各种水深海域,但目前的应用主要集中在属于浅水区的北海海域。电加热/伴热技术由于适应性强、热效率高,特别是间接电伴热技术,将成为取代热流体伴热的重要选择。间接电伴热技术较直接电加热技术效率高、安全稳定,可实现长期运行,更适合海上油气物流的输送。集肤效应电伴热技术作为间接电伴热技术的一种,由于其安全性强、热效率高、沿线温度分布均匀且可监控,适合用于长距离海底管道的伴热维温,是今后主要的发展方向。中国海底管道主动伴热维温技术需要在当前国家对重要装备国产化大力支持的背景下,开展横向和纵向对比,加大应用研究力度,突破接线盒处连接点的可靠性等关键问题,早日实现海底管道集肤伴热技术国产化,为中国海上油气田的可持续发展提供技术支撑。
        The active heat tracing and insulation technology of subsea pipeline, as a supplement to the passive thermal insulation, will be applied to the development of offshore high viscosity and low pour-point oil and deep-water oil and gas in China. At present, however, the application of independently developed active heat tracing and insulation technology of subsea pipeline is still blank in China. Therefore, it is necessary to analyze and compare domestic and foreign application cases and learn the advanced practices from them. It is indicated from the investigation and analysis that the active heat tracing and insulation technology of subsea pipeline is suitable for the sea areas in different depths, but currently its application mainly focuses on the North Sea which is shallow-water area. Due to its strong adaptability and high heat efficiency, electric heating/heat tracing technology, especially the indirect electric heat tracing technology will certainly replace the hot fluid heat tracing technology. Compared with the direct electric heating technology, the indirect electric heat tracing technology is more efficient, stabler and safer and can be used for long-term operation, so it is more suitable for offshore oil and gas transportation. As a kind of indirect electric heat tracing technology, the skin-effect electric tracing is the main development direction in the future for it is of high safety and heat efficiency and its temperature along the pipeline is uniformly distributed and controllable, so it is suitable for the heat tracing and insulation of long-distance subsea pipelines. In the background that the China's government provides powerful support for important equipment localization, it is necessary to carry out horizontal and vertical comparisons on domestic active heat tracing and insulation technology of subsea pipeline and intensify its applied research to break through the key issues(e.g. the reliability of the connection point at the junction box) so as to realize the localization of skin-effect heat tracing technology of subsea pipeline as soon as possible and provide technical support for the sustainable development of offshore oil and gas fields in China.
引文
[1]王卫强,吴明,张静.电伴热技术在原油输送中的应用与展望[J].油气田地面工程,2004,23(8):26.WANG W Q,WU M,ZHANG J.Application and prospect of electric heat tracing technology in crude oil transportation[J].Oil-Gasfield Surface Engineering,2004,23(8):26.
    [2]潘长满,王为民.集肤效应伴热技术在辽河油田的应用[J].管道技术与设备,2008(5):13-14.PANC M,WANG W M.Application of skin effect accompanying heat technique on Liaohe Oilfield[J].Pipeline Technique and Equipment,2008(5):13-14.
    [3]仲志红,米鸿祥,眭峰.集油管线集肤效应电伴热技术[J].油气田地面工程,2003,22(9):26.ZHONG Z H,MI H X,SUI F.Technology of skin effect electric heat tracing for oil-gathering pipelines[J].Oil-Gasfield Surface Engineering,2003,22(9):26.
    [4]赵庆福,王岳,杜明俊,等.超稠油管道集肤电伴热效应实验与数值模拟[J].辽宁石油化工大学学报,2011,31(1):40-42.ZHAO Q F,WANG Y,DU M J,et al.Experiment and numerical simulation of the skin effect current tracing in super heavy oil pipeline[J].Journal of Liaoning Shihua University,2011,31(1):40-42.
    [5]杨红民.集肤效应电伴热技术在港口输油管道工程中的应用[J].中国港湾建设,2003(3):46-48.YANG H M.Technique of electro-couple heating with skin effect on petroleum pipelines in port transportation[J].China Harbour Engineering,2003(3):46-48.
    [6]BAKER P.Active flowline-heating technologies as alternative flow-assurance management techniques[J].Journal of the Australian Petroleum Production&Exploration Association,2014,54(2):523.
    [7]BROWN L D,CLAPHAM J,BELMEAR C,et al.Design of Britannia’s subsea heated bundle for a 25 year service life[C].Houston:Offshore Technology Conference,1999:OTC-11017-MS.
    [8]HIGHT M,DAVALATH J.Economic consideration for flowline heat loss control[C].Houston:Offshore Technology Conference,2000:OTC-12036-MS.
    [9]DENNEY D.Active heating for flow-assurance control in deepwater flowlines[J].Journal of Petroleum Technology,2003,56(6):45-46.
    [10]HARRISON G E,HARRISON M S,BRUTON D A S.King flowlines-thermal expansion design and implementation[C].Houston:Offshore Technology Conference,2003:OTC-15310-MS.
    [11]CHERKAOUI S,VERDEIL J,GIRAUDBIT S,et al.Electrically heat-traced flowline technology-key enabler for optimised field architecture developments and operated fields with high thermal performance requirements[C].Houston:Offshore Technology Conference,2016:OTC-27100-MS.
    [12]NEBELL F,NAUROIS H J D,PARENTEAU T,et al.Flow assurance modeling using an electrical trace heated pipe-in-pipe:from qualification to offshore testing[C].Houston:Offshore Technology Conference,2013:OTC-24060-MS.
    [13]NAUROIS H D,DELAPORTE D,HELINGOE M,et al.Evaluation qualification of electrical heat trace pipe in pipe for a SS flow line and selection for an application on a subsea field in UK,ISLAY[C].Houston:Offshore Technology Conference,2011:OTC-21396-MS.
    [14]KRISTIAN L J,KULBOTTEN H,KLEVJER G,et al.Direct electrical heating of subsea pipelines[C].Singapore City:International Society of Offshore and Polar Engineers,2014:ISOPE-I-93-124.
    [15]CANDELIER C,DURICA S,BEYS F.Subsea pipeline electrical heat trace(EHT)-“active”heating-application for a deep water brown field development[C].Ravenna:Offshore Mediterranean Conference,2015:OMC-2015-494.
    [16]SENGUPTA S,MCCORMICK J.Electric heat tracing design for impedance and skin effect systems[J].Industry Applications Magazine IEEE,1996,2(2):60-65.
    [17]ANGAYS P.High efficiency heating method for subsea pipelines heating[C].Toronto:Petroleum and Chemical Industry Conference,2011:1-8.
    [18]NYSVEEN A,KULBOTTEN H,LERVIK,et al.Direct electrical heating of subsea pipelines-technology development and operating experience[C].Denver:Petroleum and Chemical Industry Conference,2005:177-187.
    [19]DRETVIK S,ATLE H B.Direct heated flowlines in the Asgard Field[C].Stvanger:The Eleventh International Offshore and Polar Engineering Conference,2001:ISOPE-I-01-235.
    [20]URDAHL O,ATLE H B,KEIJO J,et al.Operational experience by applying direct electrical heating for hydrate prevention[C].Houston:Offshore Technology Conference,2003:15189-MS.
    [21]WILSON A,OVERAA S,HOLM H.Ormen Lange-Flow assurance challenges[C].Houston:Offshore Technology Conference,2004:OTC-16555-MS.
    [22]LUNDE G G,VANNES K,MCCLIMANS O,et al.Advanced flow assurance system for the Ormen Lange subsea gas development[C].Houston:Offshore Technology Conference,2009:OTC-20084-MS.
    [23]LIEN I.Direct electric heating:an environmentally friendly flow-assurance tool[J].Journal of the Australian Petroleum Production&Exploration Association,2013,53(2):448.
    [24]ANSART B,MARRET A,PARENTEAU T,et al.Technical and economical comparison of subsea active heating technologies[J].Kuala:Offshore Technology Conference,2014:OTC-24711-MS.
    [25]LIROLA F,PIONETTI F R,AGOUMI J,et al.Development and qualification of an innovative and cost efficient heat traced flowline optimized for J-laying[C].Houston:Offshore Technology Conference,2016:OTC-27044-MS.
    [26]DENNIEL S,HALL S,DE-NAUROIS H,et al.Mechanical and thermal qualification of an electrically heated pipe in pipe(eh-pip)and application to subsea field development[C].Shanghai:International Conference on Ocean,Offshore and Arctic Engineering,2010:OMAE2010-20340.
    [27]DECRIN M K,NEBELL F,NAUROIS H,et al.Flow assurance modeling using an electrical trace heated pipe-in-pipe:from qualification to offshore testing[C].Houston:Offshore Technology Conference,2013:OTC-24060-MS.
    [28]FISHER R,HALL S J,CAM J F,et al.Field deployment of the world’s first electrically trace heated pipe in pipe[C].Houston:Offshore Technology Conference,2012:OTC-23108-MS.
    [29]MCDERMOTT P,SATHANANTHAN R.Active heating for life of field flow assurance[C].Houston:Offshore Technology Conference,2014:OTC-25107-MS.
    [30]方秀荣,王俊峰,曹文胜.基于集肤效应的大直径薄壁弯管感应加热[J].油气储运,2017,36(8):958-963.FANG X R,WANG J F,CAO W S.Induction heating of largediameter thin-walled elbow based on skin effect[J].Oil&Gas Storage and Transportation,2017,36(8):958-963.
    [31]赵晓刚,周毅,赵健宇.输油管道MI电伴热优化设计与应用[J].油气储运,2016,35(8):833-835,855.ZHAO X G,ZHOU Y,ZHAO J Y.Optimal design and application of MI electrical heat tracing in oil pipeline[J].Oil&Gas Storage and Transportation,2016,35(8):833-835,855.
    [32]FENSTER N,ROSEN D L,SENGUPTA S,et al.Some design considerations for skin effect and impedance heat tracing applications,and their control systems for transport of fluids in pipelines[C].Vancouver:Petroleum and Chemical Industry Conference,1994:95-101.
    [33]BURPEE W E,CARSON N B.Skin effect current tracing[J].Industry Applications IEEE Transactions on IA,1977,13(2):130-133.
    [34]尹正凯,王宣银,吴江宁.大功率集肤效应电伴热系统的研究[J].浙江大学学报(工学版),2004,38(5):636-639.YIN Z K,WANG X Y,WU J N.Study of large skin effect power tracing system[J].Journal of Zhejiang University(Engineering Science),2004,38(5):636-639.
    [35]赵晓刚,周毅,赵健宇,等.集肤效应电伴热输油管道的优化设计试验[J].油气储运,2013,32(9):951-953.ZHAO X G,ZHOU Y,ZHAO J Y,et al.Experimental optimum design of SECT for oil pipeline with electric heat tracing[J].Oil&Gas Storage and Transportation,2013,32(9):951-953.
    [36]孙广领.集肤效应电伴热在胜利埕岛海底输油管道上的应用研究[J].石油工程建设,2006,32(3):31-34.SUN G L.Application of skin-effect heat trace system in subsea pipeline in Chengdao Oilfield[J].Petroleum Engineering Construction,2006,32(3):31-34.
    [37]郭秀翠.海底管道集肤效应电伴热在渤南油气田中的应用初探[J].中国海上油气(工程),2003,15(2):20-23.GUO X C.The feasibility of the skin-effective heat tracing system for the submarine pipeline[J].China Offshore Oil and Gas(Engineering),2003,15(2):20-23.
    [38]周晓东,石云.海底管道伴热技术研究[J].管道技术与设备,2017(5):53-56.ZHOU X D,SHI Y.Study of subsea pipeline heat tracing technology[J].Pipeline Technique and Equipment,2017(5):53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700