用户名: 密码: 验证码:
有机生活垃圾多组分联合厌氧降解产甲烷性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of combined anaerobic degradation of multi-component organic domestic waste on methane production performances
  • 作者:焦秀瑶 ; 黄康祎 ; 王小铭 ; 魏潇潇 ; 谷娟 ; 李蕾 ; 彭绪亚
  • 英文作者:JIAO Xiu-yao;HUANG Kang-yi;WANG Xiao-ming;WEI Xiao-xiao;GU Juan;LI Lei;PENG Xu-ya;Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University;
  • 关键词:生活垃圾 ; 填埋产气模型 ; 厌氧降解 ; 生物化学甲烷潜力 ; 厌氧生物可降解指数 ; 联合降解影响因子
  • 英文关键词:municipal solid waste;;landfill gas production model;;anaerobic degradation;;biochemical methane potential;;anaerobic biodegradability index;;co-degradation impact factor
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:重庆大学三峡库区生态环境教育部重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(51508049);; 中央高校基本科研业务费专项项目(106112017CDJQJ218844);; 重庆市留学人员回国创业创新支持计划创新类项目(cx2018024)
  • 语种:中文;
  • 页:ZGHJ201903026
  • 页数:9
  • CN:03
  • ISSN:11-2201/X
  • 分类号:184-192
摘要
为了阐明生活垃圾多组分的混合对其厌氧降解产气性能的影响,通过在中温(37±1)℃下对餐厨类、纸类和园林类垃圾组分进行单独和联合厌氧降解产甲烷实验,研究接种物来源对单组分和多组分物料厌氧降解产甲烷性能的影响,应用修正的Gompertz模型拟合和分析物料产甲烷过程动力学特征,并借鉴和发展评价混合物料联合厌氧降解性能的量化指标方法.试验与模型拟合结果均表明:接种物来源对各组分及其组合的厌氧生物可降解程度无显著影响,但对其降解速率存在明显影响.此外,尽管物料的混合对试验初期物料降解产甲烷速率存在促进作用,但仅有3组分混合试验组在最终累计甲烷产率方面表现出显著的协同促进,在2种接种物条件下,相比于3组分单独降解的甲烷产率分别增长了16%和14%.
        In order to clarify whether the multi-component mixture of municipal solid waste may have an impact on its methane production performance, effects of inoculum sources on the anaerobic degradation of single and multi-component materials were studied by conducting biochemical methane potential(BMP) experiments on food waste(FW), newspaper(NP) and branch(BR) at mesophilic temperature(37±1)℃. The modified Gompertz model was used to fit and analyze the kinetic characteristics of the methanogenesis process, and a quantitative index method was developed to evaluate the impact on co-degradation performance. The results of experiments and model fitting exercises showed that the inoculum source had no significant effect on the biodegradability of single and multi-component materials, but had significant effect on its degradation rate. In addition, although the mixing of the components promoted the rate of degradation at the initial stage of the test, only the tri-component mixture test group showed a significant synergistic promotion in the final cumulative methane yield, and the methane yield increased by 16% and 14%,respectively, compared with the mono-degradation of materials with two different inocula.
引文
[1]Stocker T.IPCC,2013:Technical Summary.In:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J].Computational Geometry,2013,18(2):95-123.
    [2]Bogner J,Matthews E.Global methane emissions from landfills:New methodology and annual estimates 1980~1996[J].Global Biogeochemical Cycles,2003,17(2):1065.
    [3]US EPA.Inventory of U.S.greenhouse gas emissions and sinks:1990~2009[J].Federal Register,2010,33(5):273-279.
    [4]Eggleston S,Buendia L,Miwa K,et al.IPCC guidelines for national greenhouse gas inventories[R].Hayama:Institute for Global Environmental Strategies,2006.
    [5]Levis J W,Barlaz M A.Is biodegradability a desirable attribute for discarded solid waste?Perspectives from a national landfill greenhouse gas inventory model[J].Environmental Science&Technology,2011,45(13):5470.
    [6]Oonk H,Boom T.Validation of landfill gas formation models[J].Studies in Environmental Science,1995,65:597-602.
    [7]Wang X,Nagpure A S,Decarolis J F,et al.Using observed data to improve estimated methane collection from select U.S.landfills[J].Environmental Science&Technology,2013,47(7):3251-3257.
    [8]Wang X,Nagpure A S,Decarolis J F,et al.Characterization of uncertainty in estimation of methane collection from select U.S.landfills[J].Environmental Science&Technology,2015,49(3):1545-1551.
    [9]Cheremisinoff N P.6.AP-42,compilation of air pollutant emission factors[M].John Wiley&Sons,Inc.2016.
    [10]Scharff,Heijo.Applying guidance for methane emission estimation for landfills[J].Waste Management,2006,26(4):417-429.
    [11]Converti A,Drago F,Ghiazza G,et al.Co-digestion of municipal sewage sludges and pre-hydrolysed woody agricultural wastes[J].Jouranal of Chemical and Biotechnology,1997,69(2):231-239.
    [12]Borghi A D,Converti A,Palazzi E,et al.Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste[J].Bioprocess Engineering,1999,20(6):553-560.
    [13]Gallert C,Winter J.Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes:effect of ammonia on glucose degradation and methane production[J].Applied Microbiology&Biotechnology,1997,48(3):405-410.
    [14]Kiely G,Tayfur G,Dolan C,et al.Physical and mathematical modelling of anaerobic digestion of organic wastes[J].Water Research,1997,31(3):534-540.
    [15]王晓娇,杨改河,冯永忠,等.牲畜粪便与秸秆混合的厌氧发酵效果及影响因素分析[J].农业环境科学学报,2011,30(12):2594-2601.Wang X J,Yang G H,Feng Y Z,et al.Anaerobic co-digestion effects of manure and straw and analysis of influencing factors[J].Journal of Agro-Environment Science,2011,30(12):2594-2601.
    [16]Adelard L,Poulsen T G,Rakotoniaina V.Biogas and methane yield in response to co-and separate digestion of biomass wastes[J].Waste Management&Research,2015,33(1):55-62.
    [17]李金平,崔维栋,黄娟娟,等.多元混合物料协同促进厌氧消化产甲烷性能试验研究[J].中国环境科学,2018,38(3):1024-1032.Li J P,Cui W D,Huang J J,et al.Synergistic effect of multiple raw materials anaerobic digestion on methane production performances[J].China Environmental Science,2018,38(3):1024-1032.
    [18]Li Y,Zhang R,Liu X,et al.Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste,corn stover,and chicken manure[J].Energy&Fuels,2013,27(4):2085-2091.
    [19]Labatut R A,Angenent L T,Scott N R.Biochemical methane potential and biodegradility of complex organic substrates[J].Bioresource Technology,2011,102(3):2255.
    [20]Ebner J H,Labatut R A,Lodge J S,et al.Anaerobic co-digestion of commercial food waste and dairy manure:characterizing biochemical parameters and synergistic effects[J].Waste Management,2016,52:286-294.
    [21]郑苇,Phoungthong K,吕凡,等.基于生物化学性质的固体废物厌氧降解特征参数[J].中国环境科学,2014,34(4):983-988.Zheng W,Phoungthong K,LüF,et al.Biochemical characterization of solid wastes for the anaerobic degradation parameters[J].China Environmental Science,2014,34(4):983-988.
    [22]Eleazer W E,Odle W S,Wang Y S,et al.Biodegradability of municipal solid waste components in laboratory-scale landfills[J].Environmental Science&Technology,1997,31(3):911-917.
    [23]何琴,李蕾,何清明,等.重庆主城餐厨垃圾理化性质及产甲烷潜能分析[J].环境化学,2014,33(12):2191-2197.He Q,Li L,He Q M,et al.Physical and chemical properties and methane production potential of food waste in Chongqing city[J].Environmental Chemistry,2014,33(12):2191-2197.
    [24]杨娜,邵立明,何品晶.我国城市生活垃圾组分含水率及其特征分析[J].中国环境科学,2018,38(3):1033-1038.Yang N,Shao L M,He P J.Study on the moisture content and its features for municipal solid waste fractions in China[J].China Environmental Science,2018,38(3):1033-1038.
    [25]李蕾,何琴,马垚,等.厌氧消化过程稳定性与微生物群落的相关性[J].中国环境科学,2016,36(11):3397-3404.Li L,He Q,Ma Y,et al.Investigation on the relationship between process stability and microbial community in anaerobic digestion[J].China Environmental Science,2016,36(11):3397-3404.
    [26]Asato C M,Gonzalezestrella J,Jerke A C,et al.Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures.[J].Bioresource Technology,2016,216:894-903.
    [27]Rincón B,Heaven S,Banks C J,et al.Anaerobic digestion of wholecrop winter wheat silage for renewable energy production[J].Energy Fuels,2012,26(4):2357-2364.
    [28]李荣平,葛亚军,王奎升,等.餐厨垃圾特性及其厌氧消化性能研究[J].可再生能源,2010,28(1):76-80.Li R P,Ge Y J,Wang K S,et al.Characteristics and anaerobic digestion performances of kitchen wastes[J].Renewable Energy Resources,2010,28(1):76-80.
    [29]Wang X,Cruz F B D L,Ximenes F,et al.Decomposition and carbon storage of selected paper products in laboratory-scale landfills[J].Science of the Total Environment,2015,532:70-79.
    [30]Wang X,Barlaz M A.Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.[J].Science of the Total Environment,2016,557-558:355-362.
    [31]Wang X,Padgett J M,Cruz F B D L,et al.Wood biodegradation in laboratory-scale landfills[J].Environmental Science&Technology,2011,45(16):6864-6871.
    [32]Kayhanian M,Dan R.Sludge management using the biodegradable organic fraction of municipal solid waste as a primary substrate[J].Water Environment Research,1996,68(2):240-252.
    [33]Owen W F,Stuckey D C,Jr J B H,et al.Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J].Water Research,1979,13(6):485-492.
    [34]Valero D,Montes J A,Rico J L,et al.Influence of headspace pressure on methane production in biochemical methane potential(BMP)tests.[J].Waste Management,2016,48(1):193-198.
    [35]Raposo F,FernándezcegríV,Rubia M A D L,et al.Biochemical methane potential(BMP)of solid organic substrates:evaluation of anaerobic biodegradility using data from an international interlaboratory study.[J].Journal of Chemical Technology&Biotechnology,2011,86(8):1088-1098.
    [36]李超,刘刚金,刘静溪,等.基于产甲烷潜力和基质降解动力学的沼气发酵物料评估[J].农业工程学报,2015,24(12):262-268.Li C,Liu G J,Liu J X,et al.Organic substrates evaluation based on biochemical methane potential and degradation kinetic[J].Transactions of the Chinese Society of Agricultural Engineering,2015,24(12):262-268.
    [37]Hobbs S R,Landis A E,Rittmann B E,et al.Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate:inoculum ratios[J].Waste Management,2017,71:612-617.
    [38]Franson M A H,Eaton A,Clesceri L,et al.Standard methods for examinations of water and wastewater[J].American Journal of Public Health&the Nations Health,2005,56(3):387.
    [39]Hattingh W H J,Thiel P G,Siebert M L.Determination of protein content of anaerobic digesting sludge[J].Water Research,1967,1(3):185-189.
    [40]Buswell A M,Jr F W S.The mechanism of the methane fermentation[J].Journal of the American Chemical Society,1948,70(5):1778-1780.
    [41]Sosnowski P,Wieczorek A,Ledakowicz S.Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes[J].Advances in Environmental Research,2003,7(3):609-616.
    [42]杨渤京,王洪涛,陆文静,等.填埋条件下单组分垃圾厌氧降解特性研究[J].清华大学学报(自然科学版),2008,48(9):1445-1448.Yang B J,Wang H T,Lu W J,et al.Anaerobic digestion of single material waste for landfill conditions[J].Journal of Tsinghua University(Science and Technology),2008,48(9):1445-1448.
    [43]Wang Y S,Iii W S O,Eleazer W E,et al.Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition[J].Waste Management&Research,1997,15(2):149-167.
    [44]Holliger C,Alves M,Andrade D,et al.Towards a standardization of biomethane potential tests[J].Water Science&Technology,2016,74(11):2515-2522.
    [45]Pellera F M,Gidarakos E.Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste[J].Journal of Environmental Chemical Engineering,2016,4(3):3217-3229.
    [46]Korai M S,Mahar R B,Uqaili M A.The seasonal evolution of fruit,vegetable and yard wastes by mono,co and tri-digestion at Hyderabad,Sindh Pakistan.[J].Waste Management,2018,71:461.
    [47]瞿贤,何品晶,邵立明,等.生物质组成差异对生活垃圾厌氧产甲烷化的影响[J].中国环境科学,2008,28(8):730-735.Qu X,He P J,Shao L M,et al.Effect of waste composition on anaerobic methanization of municipal solid waste[J].China Environmental Science,2008,28(8):730-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700